2011, Number 1
<< Back
Rev Mex Ing Biomed 2011; 32 (1)
Physiologic simulator to predict the arterial oxygen saturation at extreme heights
Reyes LA, Pérez BME, Fuchs GOL, Reyes MM
Language: English
References: 20
Page: 63-71
PDF size: 165.46 Kb.
ABSTRACT
A simulator («Alturas») was developed to calculate the levels of arterial oxygen saturation (SaO
2) at heights ranging from small to extreme. The results of the simulations were compared to published experimental data in order to validate the accuracy of the simulator. Three types of cases were used in the comparison: (1) non acclimatized people at heights ranging from 20 m to 4,162 m above sea level, (2) inhabitants of mountain zones living at heights between 1,692 m and 4,230 m, (3) people in ascension of a mountain at heights from 4,250 m to 7,500 m. The statistical analysis shows no significant difference between the reported clinical values and the values generated by the simulator. The simulator is able to predict the different average values of SaO
2 at different heights under three conditions: recently arrived, in adaptation and in acclimatization.
REFERENCES
Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and lifecycle perspectives. Am J Phys Anthropol 1998; Suppl 27: 25-64.
West JB, Readhead A. Working at high altitude: medical problems, misconceptions, and solutions. Observatory 2004; 124: 1-14.
Richalet JP, Donoso MV, Jiménez D, Antezana AM, Hudson C, Cortés G et al. Chilean miners commuting from sea level to 4,500 m: a prospective study. High Alt Med Biol 2002; 3: 159-66.
Droma Y, Hanaoka M, Basnyat B, Arjyal A, Neupane P, Pandit A et al. Symptoms of acute mountains sickness in sherpas exposed to extremely high altitude. High Alt Med Biol 2006; 7: 312-314.
Huicho L, Niermeyer S. Cardiopulmonary pathology among children resident at high altitude in tintaya, Peru: A cross-sectional study. High Alt Med Biol 2006; 7: 168-179.
American Thoracic Society. Standardization of spirometry. Am J Respir Crit Care Med 1995; 152: 1107-1136.
Milhorn HT, Benton R, Guyton AC. A mathematical model of the human respiratory control system. Biophys 1965; 5: 27-44.
West JB. Blood flow to the lung and gas exchange. Anesthesiol 1972; 54(4): 124-138.
Botsis T, Mantas J. Mathematical modelling for the study of respiratory mechanics. Stud Health Technol Inform 2003; 95: 9-14.
Dickinson CJ. A digital computer model to teach and study gas transport and exchange between lungs, blood and tissues (“MacPuf”). J Physiol (London) 1972; 224: 7-9.
Hardman JG, Bedforth NM, Ahmaed AB, Mahajan RP, Aitkenhead AR. A physiology simulator: validation of its respiratory components and its ability to predict the patient’s response to changes in mechanical ventilation. Br J Anaesthesia 1998; 81: 327-332.
West JB. The physiologic basic of high altitude diseases. Ann Intern Med 2004; 141: 789-800.
Smith C, Dempsey J, Hornbein T. Control of breathing at high altitude. In: Hornbein T, Schoene R, editors, High Altitude: An exploration of human adaptation, Marcel Dekker AG (New York), 2001: 139-173.
Wu T, Kayser B. High altitude adaptation in tibetans. High Alt Med Biol 2006; 7: 193-208.
West JB. Human physiology at extreme altitudes on Mount Everest. Science 1984; 223: 784-788.
West JB. Barometric pressures on Mt. Everest: New data and physiological significance. J Appl Physiol 1999; 86: 1062-1066.
Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P50 during a simulated ascent of Mt. Everest, operation Everest II. High Alt Med Biol 2007; 8: 32-4.
Boyle J. A microcomputer program of pulmonary and tissue gas exchange. Ann Biomed Eng 1986: 425-435.
Botella de Maglia J, Compte-Torrero L. Saturación arterial de oxígeno a gran altitud. Estudio en montañeros no aclimatados y en habitants de alta montaña. Med Clin 2005; 124(5): 172-176.
Botella de Maglia J, Soriano-Real R, Compte-Torrero L. Saturación arterial de oxígeno durante la ascensión a una montaña de más de 8,000 metros. Med Intensiva 2008; 32(6): 277-281.