2011, Number 3
<< Back Next >>
Rev Fac Med UNAM 2011; 54 (3)
Free radicals and mechanisms of tissue damage in diabetes mellitus
Acosta AG, Frías LMG, Reyes-Montes MR, Vargas HV, Suárez CJA
Language: Spanish
References: 44
Page: 46-53
PDF size: 215.30 Kb.
ABSTRACT
Diabetes mellitus (DM) is a chronic-degenerative disease with a high incidence and prevalence around the world. Chronic hyperglycemia, a feature of diabetes, induces a higher production of superoxide free radicals, which play a major role in the mechanisms of tissue damage responsible for the clinical complications of DM: advanced glycosylation and activation of sorbitol, hexosamines, and protein kinase C pathways. Although different drugs that inhibit the damaging pathways have been developed, their actual benefit in diabetic patients has not been proved yet. Therefore, adequate glycemia control is still the fundamental factor to prevent or delay tissue damage.
REFERENCES
Aguilar-Salinas CA, Vázquez-Chávez C, Gamboa-Marrufo R, García-Soto N, Ríos-González JJ, Holguín R. Prevalence of obesity, diabetes, hypertension and tobacco consumption in an urban adult mexican population. Arch Med Res. 2001;32:446-53.
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047-53.
Schering Deb, Kasten Shelia. The Link Between Diabetes and Cardiovascular Disease. J of Pharm Pract. 2004;61-5.
Hsia C, Raskin P. The diabetic lung: Relevant of alveolar microangiopathy for the use of inhaled insulin. Am J of Med. 2005;118:205-11.
Acosta Altamirano G, Hernández Rodríguez M, Reyes Montes MR, Parrao Rodríguez CA. Aspectos autoinmunitarios en la diabetes mellitus. Rev Hosp Jua Mex. 1999;66:75-84.
Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782-7.
Triana ME. La hiperglicemia y sus efectos tóxicos. Un concepto patogénico para la micro y macroangiopatía diabética. Rev Cubana Angiol Cir Vasc. 2001;2:131-41.
Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53:110-8.
Xue-Liang D, Edelstein D, Rossetti L, et al. Hyperglicemia induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. PNAS. 2000;97:12222-6.
Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008;45:1-16.
Haffner SM. Clinical relevance of the oxidative stress concept. Metabolism. 2000;49:30-34.
Kaneto H, Katakami N, Kawamori D, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antiox Redox Signal. 2007;9:355-366.
Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24-38.
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212:167-78.
Brownlee M. The Pathobiology of Diabetic Complications A Unifying Mechanism. Diabetes. 2005;54:1615-25.
García C, Díaz MT, Morales F. Presencia de las especies reactivas de oxígeno en la diabetes mellitus insulinodependiente. Av Diabetol. 2005;21:145-8.
Dorado MC, Rugerio VC, Rivas AS. Radicales libres en la biomedicina y estrés oxidativo. Rev Fac Med UNAM. 2003; 46:229-35.
Matés JM, Pérez-Gómez C, Núñez CI. Antioxidant enzymes and human disease. Clin Biochem. 1999;32:595-603.
Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol Pathway to Diabetes-Induced Oxidative Stress. J Am Soc Nephrol. 2003;14:S233-S236.
Díaz-Flores M, Baiza-Gutman LA, Ibáñez-Hernández MA, et al. Aspectos moleculares del daño tisular inducido por la hiperglucemia crónica. Gac Med Mex. 2004;140:437-47.
Bonnefont-Rousselot D, Beaudeux JL, Thérond P, Peynet J, Legrand A, Delattre J. Diabetes mellitus, oxidative stress and advanced glycation endproducts. Ann Pharm Fr. 2004; 62:147-57.
Raj DSC, Choudhury D, Welbourne TC, Levi M. Advanced glycation end products: A nephrologist´s perspective. Am J Kidney Dis. 2000;35:365-80.
Shangari D, O´Brien PJ. The cytotoxic mechanism of glyoxal involves stress. Biochem Phamacol. 2004;68:1433-42. 24. Furth AJ. Glycated proteins in diabetes. Br J Biomed Sci. 1997;54:192-200.
Goh SY, Cooper ME. The Role of Advanced Glycation End Products in Progression and Complications of Diabetes. J Clin Endocrinol Metab. 2008;93:1143-52.
Jakuss V, Rietbrock N. Advanced Glycation End-Products and the progress of Diabetic Vascular Complications. Physiol Research. 2004;53:131-42.
Koim-Litty V, Sauer U, Nerfich A, Lehmann R, Schieicher ED. High glucose induced transforming growth factor beta 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest. 1998; 101:160-9.
Idris I, Gray S, Donnelly R. Protein Kinase C activation: isozyme-specific effect on methabolism and cardiovascular complications in diabetes. Diabetología. 2001;44:659-73.
Yuan SY, Ustinova EE, Wu MH, et al. Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes. Circ Res. 2000;87: 412-7.
Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47: 859-66.
Chibber R, Ben-Mahmud BM, Kohner EM, et al. Protein kinase C beta 2-dependent phosphorylation of core 2 GlcNAc-T promotes leucocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes. 2003;52:1519-27.
Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992;41:26-9.
Smit AJ, Lutgers HL. The clinical relevance of advanced glycation end products (AGE) and recent development in pharmaceutics to reduce AGE accumulation. Curr Med Chem. 2004;11:2767-84.
Stitt A, Gardiner TA, Alderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51:2826-32.
Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787-90.
Shultz JJ, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice Cardiovascular Diabetology. 2005;4:5.
Beckman JA, Goldfine AB, Gordon MB, et al. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:2392-8.
Da Ros R, Assaloni R, Ceriello A. Antioxidant therapy in diabetic complications: what is new? Curr Vasc Pharmacol. 2004;2:335-41.
Evans JL. Antioxidants: Do they have a role in the treatment of insulin resistance?. Indian J Med Res. 2007;125: 355-72.
Tankova T, Koev D, Dakovska L. Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study) Rom J Intern Med. 2004;42: 457-64.
Lida KT, Kawakami Y, Suzuki M, et al. Effect of thiazolidinediones and metformin on LDL oxidation and aortic endothelium relaxation in diabetic GK rats. Am J Physiol. 2003;284:1125-30.
Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 2003;29:S28-35.
Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs. 2003;63: 1373-405.
Fukui T, Noma T, Mizushige K, Aki Y, Kimura S, Abe Y: Dietary troglitazone decreases oxidative stress in early stage type II diabetic rats. Life Sci. 2000;66:2043-9.
Tsubouchi H, Inoguchi T, Inuo M, et al. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta cell line, MIN6- a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun. 2004;326:60-5.