2010, Number 2
<< Back
TIP Rev Esp Cienc Quim Biol 2010; 13 (2)
Pentamerism and modularity in sea urchins
López-Sauceda J, Aragón JL
Language: English
References: 16
Page: 121-125
PDF size: 254.77 Kb.
ABSTRACT
Fivefold symmetry is important in many scientific areas. In particular, five-part units or pentamerism is a basic pattern in the design of many animals and plants. Despite some efforts, a definite explanation of the abundance of this pentamerism is still missing. In this note we use sea urchins as working examples to propose some ideas, based on spatial efficiency arguments and the concept of modular systems, which can give clues to understand the advantages of a pentameral body plan partition in biological systems.
REFERENCES
Breeder, C.M. Observations on the occurrence and attributes of pentagonal symmetry. Bull. Amer. Mus. Nat. Hist. 106, 173-220 (1955).
Hargittai, Itsvan (Ed.). Fivefold Symmetry (World Scientific, Singapore, 1992).
Hotchkiss, F.H.C. A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology24, 200-214 (1998).
Stephenson, D.G. Pentamerism and the ancestral echinoderm. Nature (London) 250, 82-83 (1974).
López-Sauceda, J. & Aragón, J.L. Eutacticity in sea urchin evolution. B. Math. Biol. 70, 625-634 (2008).
Fontana, W. & Buss, L.W. “The arrival of the fittest”: Toward a theory of biological organization. B. Math. Biol. 56, 1-64 (1994).
Wagner, G.P. Homologues, natural kinds and the evolution of modularity. American Zool. 36, 36-43 (1996).
Bolker, J.A. Modularity in development and why it matters to Evo- Devo. American Zool. 40, 770-776 (2000).
Eble, G. Morphological modularity and macroevolution. In: Modularity. Understanding the development and evolution of natural complex systems. Edited by Callebaut, W. & Rasskin- Gutman, D. (MIT Press, Cambridge, Massachusetts, 2005).
Coxeter, H.S.M. Regular polytopes (Dover, New York, 1973).
Aragón, J.L., Gómez-Rodríguez, A. & Torres, M. Simplified dynamical model for the motility of irregular echinoids. Phys. Rev. E. 72, 041925 (2005).
López-Sauceda, J. Regularidad en la clase Echinoidea. Ph.D. Thesis, Universidad Nacional Autónoma de México. No. 001-11281-L5-2009 (2009) 109 págs.
de Berg, M., van Kreveld, M., Overmars, M. & Schwarzkopf, O. Computational Geometry (Springer-Verlag, New York, 2000).
Wagner, G.P., Mezey, J. & Calabretta, R. Natural selection and the origin of modules. In: Modularity. Understanding the development and evolution of natural complex systems. Edited by Callebaut, W. & Rasskin-Gutman, D. (MIT Press, Cambridge, Massachusetts, 2005).
Desiraju, G.R. Crystal: In search of clarity. Nature (London) 423, 485 (2003).
Chernikov, A.A., Sagdeev, R.Z., Usikov, D.A., Zakharov, M. Yu & Zaslavsky, G.M. Minimal chaos and stochastic webs. Nature (London) 326, 559-563 (1987).