2009, Number 2
<< Back Next >>
Rev Med UV 2009; 9 (2)
Long-term qualitative evaluation of the activation state of microglial cells in the brain of neonatally enucleated mice
Escalante-Martínez D, Chavarría A, Gutiérrez-Ospina G, Romo-González T
Language: Spanish
References: 50
Page: 13-18
PDF size: 657.65 Kb.
ABSTRACT
Introduction. Cellular elements and secretory products of the immunological system promote and/or facilitate neuralreorganization. Although a large-scale reorganization takes place in the brain of neonatally blinded rodents, it is yet unclear whether immunological factors modulate such response.
OBJETIVES, MATERIAL and METHODS. The present work evaluated the state of activation of microglial cells and their distribution of pro- and anti-inflammatory cytokines in the brain of adult control rats and of those blinded at birth by means of immuno-peroxidase techniques.
Results: (i) Corticaland hippocampal microglia displayed, qualitatively, a reduced number of cellular processes immunoreactive for F4/80 in blinded rats. (ii) Microglial cells and perivascular macrophages were positive for MHCII at various locations of blinded rats’ brains.
Conclusions. The data presented support that microglial cells maintain a long-term pseudo-actived state in some areas of the brain of blinded rats, such condition could facilitates and/or promotes constant reorganization events in these areas.
REFERENCES
Drury HA y cols. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 1996; 8: 1-28.
Rauschecker JP. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 1995; 18(1): 36-43.
Merrill JE, Jonakait GM. Interactions of the nervous and immune systems in development, normal brain homeostasis, and disease. FASEB J 1995; 9(8): 611-8.
Becher B, Prat A, Antel JP. Brain-immune connection: immunoregulatory properties of CNS-resident cells. Glia 2000; 29(4): 293- 304.
Cohen N. Norman Cousins Lecture. The uses and abuses of psychoneuroimmunology: a global overview. Brain Behav Immun 2006; 20(2): 99-112.
Paus R, Theoharides TC, Arck PC. Neuroimmunoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol 2006; 27(1): 32-9.
Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 2006; 6(4): 318-28.
Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 2006; 172(1-2): 38-58.
Ambrosini E, Aloisi F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 2004; 29(5): 1017-38.
Boulanger LM, Shatz CJ. Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 2004; 5(7): 521-31.
Allen NJ, Barres BA. Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 2005; 15(5): 542-8.
Gage FH, McAllister AK. Neuronal and glial cell biology. Curr Opin Neurobiol 2005; 15(5): 497-9.
Freeman MR. Sculpting the nervous system: glial control of neuronal development. Curr Opin Neurobiol 2006; 16(1): 119-25.
Martin KC, Peles E. Neuronal and glial cell biology. Current Opinion in Neurobiology 2006; 16: 489–91.
Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006; 29(10): 547-53.
Wu CY y cols. Expression of 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the amoeboid microglial cells in the developing rat brain. Neuroscience 2006; 142(2): 333-41.
Ziv Y y cols. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9(2): 268-75.
Bains JS, Oliet SH. Glia: they make your memories stick! Trends Neurosci 2007; 30(8): 417-24.
Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2007; 55(3): 233-8.
Vincent AJ, Lau PW, Roskams AJ. SPARC is expressed by macroglia and microglia in the developing and mature nervous system. Dev Dyn 2008; 237(5): 1449-62.
Sadato N y cols. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 1996; 380(6574): 526-8.
Cohen LG y cols. Functional relevance of cross-modal plasticity in blind humans. Nature 1997; 389(6647): 180-3.
Sadato N, Okada T, Honda M, Yonekura Y. Critical period for crossmodal plasticity in blind humans: a functional MRI study. Neuroimage 2002; 16(2): 389-400.
Maurer D, Lewis TL, Mondloch CJ. Missing sights: consequences for visual cognitive development. Trends Cogn Sci 2005; 9(3): 144-51.
Ptito M, Kupers R. Cross-modal plasticity in early blindness. J Integr Neurosci 2005; 4(4): 479-88.
Sathian K. Visual cortical activity during tactile perception in the sighted and the visually deprived. Dev Psychobiol 2005; 46(3): 279- 86.
Laemle LK, Strominger NL, Carpenter DO. Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 2006; 396(2): 108-12.
Bronchti G, Schönenberger N, Welker E, Van der Loos H. Barrelfield expansion after neonatal eye removal in mice. Neuroreport 1992; 3(6): 489-92.
Rauschecker JP, Tian B, Korte M, Egert U. Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. Proc Natl Acad Sci USA 1992; 89(11): 5063-7.
Röder B y cols. Improved auditory spatial tuning in blind humans. Nature 1999; 400(6740): 162-6.
Théoret H, Merabet L, Pascual-Leone A. Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions. J Physiol Paris 2004; 98(1-3): 221-33.
Kujala T, Alho K, Näätänen R. Cross-modal reorganization of human cortical function. Trends Neurosci 2000; 23(3): 115-20.
Pascual-Leone A y cols. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 1999; 37(2): 207-17.
Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci 2002; 3(6): 443-52.
Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 2006; 109(1-2): 210-26.
Terayama R y cols. Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury. Neuroscience 2008; 153(4): 1245-55.
Zheng D, Purves D. Effects of increased neural activity on brain growth. Proc Natl Acad Sci USA 1995; 92(6): 1802-6.
Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39(1): 151-70.
Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 1968; 85(2): 145-57.
Aldskogius H, Liu L, Svensson M. Glial responses to synaptic damage and plasticity. J Neurosci Res 1999; 58(1): 33-41.
Cullheim S, Thams S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res Rev 2007; 55(1): 89-96.
Bruce-Keller AJ. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res 1999; 58(1): 191-201.
Dijkstra S y cols. CD81 and microglial activation in vitro: proliferation, phagocytosis and nitric oxide production. J Neuroimmunol 2001; 114(1-2): 151-9.
Ziv Y, Schwartz M. Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun 2008; 22(2): 167-76.
Kim WK, Ganea D, Jonakait GM. Inhibition of microglial CD40 expression by pituitary adenylate cyclase-activating polypeptide is mediated by interleukin-10. J Neuroimmunol 2002; 126(1-2): 16-24.
Delgado M, Leceta J, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 2003; 73(1): 155-64.
Kuhn SA y cols. Microglia express GABA(B) receptors to modulate interleukin release. Mol Cell Neurosci 2004; 25(2): 312-22.
Martínez-Méndez R. Determinación de aminoácidos neurotransmisores en la corteza somatosensorial de ratas enucleadas al nacimiento. (Tesis de Licenciatura). México (D. F.): UNAM. 2008.
Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 1998; 95(10): 5779-84.
Gómez-Palacio-Schjetnan A, Escobar ML. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers. Neurosci Lett 2008; 445(1): 62-7.