2009, Number 1
<< Back Next >>
Rev Med UV 2009; 9 (1)
Evolution of culturemedium in the study of neural stem cells
Hernández GEA, Juárez AE
Language: Spanish
References: 71
Page: 16-23
PDF size: 233.05 Kb.
ABSTRACT
Since its development at beginnings of 20th Century, cell culture media has played a relevant roll in the in vitro cell study. In this new century, media cell culture has been improved, knowing their exact formulation, without animal sera supplementation. Due to the absence of animal serum in these media, they are called “serum free medium” (SFM). Nowadays, SFM are essential for the study of several cellular types, supporting cellular proliferation and diff erentiation. Atier a series of changes throughout years, SFM have been used for study of the so-called “stem cells”. Specifically, SFM has played an important roll in the study of the neural stem cells, whose discovery in the adult destroyed the dogma of the static brain. The discovery of neural stem cells have opened the possibility of cell therapies development for several neurodegenerative diseases like Alzheimer and Parkinson. In the cell therapies development, the SFM play a relevant roll. In this way, this paper will review the scientific literature about SFM and its possible improvement for the isolation and propagation of neural stem cells
REFERENCES
Freshney R. Ian. Culture of animal cells a manual of basic technique; 4a Ed. New York Wiley-Liss. 2000. 1-6, 105-120.
Harrison, R. G. Observation on the living developing nerve fibers. Proc. Soc. Exp. Boil. Med. 1907; 4: 662-669.
Carrel, A. On The experimental life of tissues outside the organism. J. Exp. Med. 1912; 15: 516-528.
Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1995; 122: 501-504.
Hayashi I, Sato GH. Replacement of serum by hormones permits growth of cells in a defined medium. Nature. 1976; 259: 132-134.
Wu R, Sato GH. Replacement of serum in cell culture by hormones: A study of hormonal regulation of cell growth and specific gene expression. J Toxicol Environ Health. 1978; 4: 427-448.
Barnes D, Sato G. Methods for growth of cultured cells in serum-free medium. Anal Biochem. 1980; 102: 255-270.
Romijn HJ. Development and advantages of serum-free, chemically defined nutrient media for culturing of nerve tissue. Biol Cell. 1988; 63: 263-268.
Hutchings SE, Sato GH. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc Natl Acad Sci USA. 1978; 75: 901-904.
Poskitt PK, Poskitt TR, Wallace JH. Release into culture medium of membrane-associated, tumor-specific antigen by B-16 melanoma cells. Proc Soc Exp Biol Med. 1976; 152: 76-80.
Rizzino A, Sato G. Growth of embryonal carcinoma cells in serum-free medium. Proc Natl Acad Sci U S A. 1978; 75: 1844-1848.
Bottenstein JE, Sato GH. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979; 76: 514-517.
Bottenstein JE. Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes. Proc Natl Acad Sci U S A. 1986; 83: 1955-1959.
Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC. Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant Proc. 2005; 37: 276-279.
Asada N, Tanaka Y, Hayashido Y, Toratani S, Kan M, Kitamoto M, Nakanishi T, Kajiyama G, Chayama K, Okamoto T. Expression of fibroblast growth factor receptor genes in human hepatoma-derived cell lines. In Vitro Cell Dev Biol Anim. 2003; 39: 321-328
Mitrani E, Nadel G, Hasson E, Harari E, Shimoni Y. Epithelial- Mesenchymal interactions allow for epidermal cells to display an in vivo-like phenotype in vitro. Differentiation. 2005; 73: 79-87.
Krasna M, Planinsek F, Knezevic M, Arnez ZM, Jeras M. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm. 2005; 291: 31-37.
Webb SF, Davies S, Evans-Gowing R, Duncan G. A new method to obtain epithelial and stromal explants from human corneo-scleral discs for the routine culture of corneal epithelial and fibroblast cells. Methods Cell Sci. 2003; 25: 167-176.
Carrington LM, Boulton M. Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. J Cataract Refract Surg. 2005; 31: 412-423.
Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135: 1127-1128.
Nottebohm F. A Brain for all seasons: Cyclical anatomical changes in song control nuclei of the canary brain. Science. 1981; 214: 1368- 1370.
Goldman SA, Nottebohm F.Neuronal. Production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A. 1983; 80: 2390-2394.
Paton, J. A. And Nottebohm, F. N. Neurons generated in the adult brain are recruited into functional circuits. Science. 1984; 225: 1046- 1048.
Burd GD, Nottebohm F. Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol. 1985; 240: 143- 152.
Gross CG. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci. 2000; 1: 67-73.
Sadananda M. Adult neurogenesis in the brain of higher vertebrates: Implications of the paradigm shift. Curr. Sci. 2004; 87: 297-307.
Reynolds BA, Tetzlaff W, Weiss S. A Multipotent EGF-Responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992; 2: 4565-4574.
Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255: 1707-1710.
Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996; 175: 1-13.
Kumar RK, O’Grady R, Li W, Smith LW, Rhodes GC. Primary culture of adult mouse lung fibroblasts in serum-free medium: Responses to growth factors. Exp Cell Res. 1991; 193: 398-404.
Gritti A, Galli R, Vescosi AL Culture of stem cells of central nervous system Cap 4. En: Protocols for neural stem cell culture. 3a Ed. New Jersey. Fedoroff y Richardson. Humana Press. 2001.
Feng CZ, Yung H. Chiang, MD. Long-term nonpassaged EGF-responsive neural precursor cells are stem cells. Wound Rep. Reg. 1998; 6: 337- 348.
Gritti A, Vescovi AL, Galli R. Adult neural stem cells: plasticity and developmental potential. J Physiol Paris. 2002; 96: 81-90.
Roediger B, Armati PJ. Oxidative stress induces axonal beading in cultured human brain tissue. Neurobiol Dis. 2003; 13: 222-229.
Svendsen CN, Fawcett JW, Bentlage C, Dunnett SB. Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp Brain Res. 1995; 102: 407-414.
Bottenstein, JE and Harvey. Cell culture in the neurosciences. New York/London. Plenum Press. 1985.
Tabernero A, Medina A., Sánchez-Abarca LI, Medina JM. Albumin strongly activates pyruvate dehydrogenase-catalyzed reaction in rat neurons and astrocytes from primary culture. Ars Pharmaceutica. 1996; 37: 771-779.
Ni Li, Wen Y, Peng X, Jonakait GM. Antioxidants N-Acetylcysteine (NAC) And 2-mercaptoethanol (2-ME) affect the survival and differentiative potential of cholinergic precursors from the embryonic septal nuclei and basal forebrain: Involvement of Ras signaling. Brain Res Dev Brain Res. 2001;130: 207-216.
Shindler KS, Roth KA. Cholera toxin binds to differentiating neurons in the developing murine basal ganglia. Brain Res Dev Brain Res. 1996; 92: 199-210.
Juarez-Aguilar E, Castro-Munozledo F. 22-Kda and 20-Kda hGH isoforms Show differential effects when assayed in 3T3-F442A And 3T3-F442A/C4 adipocytes. Biochem Biophys Res Commun. 1995; 217: 28-33.
Oku H, Yamashita M, Iwasaki H, Chinen I. Further optimization of culture method for rat keratinocytes: Titration of glucose and sodium chloride in vitro. Cell Dev Biol Anim. 1999; 35:67-74.
Castro-Munozledo F, Valencia-Garcia C, Kuri-Harcuch W. Cultivation of rabbit corneal epithelial cells in serum-free medium. Invest Ophthalmol Vis Sci. 1997; 38: 2234-2244.
Tanno Y, Denburg JA. Long term growth of factor-producing lymphoid and myeloid cells in serum-free medium. Cell Struct Funct. 1986; 11: 209-217.
Iscove NN, Melchers F. Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharidereac tive B lymphocytes. J Exp Med. 1978;. 147: 923-933.
Kristensen F, Walker C, Walti M, De Weck AL. Development of a serum-free defined culture medium for lymphoblast transformation tests of mouse spleen and thymus cells. Scand J Immunol. 1982; 16: 209-216.
Kumar S. Growth of neural cell cultures in a chemically defined serum-free culture medium. Neurochem Res. 1983); 8: 847-52.
Vicario C, Tabernero A, Medina JM. Regulation of lactate metabolism by albumin in rat neurons and astrocytes from primary culture. Pediatr Res. 1993; 34: 709-715.
Bauer I, Oliver G. Rössler, Gerald Thiel. Sodium selenite protects immortalized hippocampal neurons against glutamate-induced cell death. Proceedings of the Annual Spring Meeting. German Society for Biochemistry and Molecular Biology. 2004.
Tabernero A, Granda B, Medina A, Sanchez-Abarca LI, Lavado E, Medina JM. Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem. 2002; 81: 881- 891.
Glatthaar-Saalmuller B, Fallier-Becker P, Weiser M. Influence of homeopathically processed coenzyme Q10 on proliferation and redifferen tiation of endothelial cells. Forsch Komplementarmed Klass Naturheilkd. 2004; 11: 267-273.
Menke T, Gille G, Reber F, Janetzky B, Andler W, Funk RH, Reichmann H. Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors. 2003; 18: 65-72.
Rampello L, Giammona G, Aleppo G, Favit A, Fiore L. Trophic action of Acetyl-L-Carnitine in neuronal cultures. Acta Neurol (Napoli). 1992; 14: 15-21.
Forloni G, Angeretti N, Smiroldo S. Neuroprotective activity of Acetyl- L-Carnitine: studies in vitro. J Neurosci Res. 1994; 37: 92-96.
Imperato A, Ramacci MT, Angelucci L. Acetyl-L-Carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci Lett. 1989; 107: 251-255.
De Simone R, Ramacci MT, Aloe L. Effect of Acetyl-L-Carnitine on forebrain cholinergic neurons of developing rats. Int J Dev Neurosci. 1991; 9: 39-46.
Taglialatela G, Navarra D, Cruciani R, Ramacci MT, Alema GS, Angelucci L. Acetyl-L-Carnitine treatment increases nerve growth factor levels and choline acetyltransferase activity in the central cervous system of aged rats. Exp Gerontol. 1994;. 29: 55-66.
Bigini P, Larini S, Pasquali C, Muzio V, Mennini T. Acetyl-L-Carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo moto neurons. Neurosci Lett. 2002; 329: 334-338.
Formenti A, Arrigoni E, Sansone V, Arrigoni Martelli E, Mancia M. Effects of Acetyl-L-Carnitine on the survival of adult rat sensory neurons in primary cultures. Int J Dev Neurosci. 1992;10: 207-214.
Ishii T, Shimpo Y, Matsuoka Y, Kinoshita K. Anti-Apoptotic effect of Acetyl-L-Carnitine and I-Carnitine in primary cultured neurons. Jpn J Pharmacol. 2000; 83: 119-124.
Okamoto T, Tani R, Yabumoto M, Sakamoto A, Takada K, Sato GH, Sato JD. Effects of insulin and transferrin on the generation of lymphokineac tivated killer cells in serum-free medium. J Immunol Methods. 1996; 195: 7-14.
Inui K, Oreffo RO, Triffitt JT. Effects of β-Mercaptoethanol on the proliferation and differentiation of human osteoprogenitor cells. Cell Biol Int. 1997;. 21: 419-425.
Ishii K, Katayama M, Hori K, Yodoi J, Nakanishi T. Effects of 2- Mercaptoethanol on survival and differentiation of fetal mouse brain neurons cultured in vitro. Neurosci Lett. 1993; 163:159-162.
Grill RJ Jr, Pixley SK. 2-Mercaptoethanol is a survival factor for olfactory, cortical and hippocampal neurons in short-term dissociated cell culture. Brain Res. 1993; 613:168-172.
Katayama M, Ishii K. 2-Mercaptoethanol-Independent survival of fetal mouse brain neurons cultured in a medium of human serum. Brain Res. 1994; 656:409-412.
Burdo JR, Antonetti DA, Wolpert EB, Connor JR. Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system. Euroscience. 2003; 121: 883-90.
Ferrer Viant D, Jorge Fonseca C, Cutiño Clavel I, García Rodríguez RE, Arce Gómez DL. Radicales libres y su papel en la homeostasia neuronal. MEDISAN 1999; 3: 5-11.
Leimberg JM, Konijn AM, Fibach E. Developing Human Erythroid Cells Grown In Transferrin-Free Medium Utilize Iron Originating From Extracellular Ferritin. Am J Hematol. 2003; 73: 211-222.
Lok C.N., T.T. Loh Regulation of transferrin function and expression: Review and update. Biol Sgnals and Recept. 1998;7: 157-178
Guennoun R, Schumacher M, Robert F, Delespierre B, Gouezou M, Eychenne B, Akwa Y, Robel P, Baulieu EE. Neurosteroids: expression of functional 3-beta-hydroxysteroid dehydrogenase by rat sensory neurons and Schwann cells. Eur J Neurosci. 1997; 9: 2236-2247.
Savaskan NE, Bräuer AU., Kühbacher M, Eyüpoglu IY, Kyriakopoulos A,. Ninnemann O, Behne D,. Nitsch R. Selenium deficiency increases susceptibility to glutamate induced excitotoxicity. FASEB J. 2002. 17: 112-114.
Ponce MT, Guinazu ME, Tizio R. Improved in vitro embryo development of stenospermic grape by putrescine. Biocell. 2002; 26: 263-266.