2010, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2010; 31 (1)
orthotropic and isotropic dynamic models of tympanic membrane
Martínez-Celorio RA, Rodríguez-Bravo H, Rodríguez CRA, Martí-López L, Castro-Sánchez R, Ireta MF, Hernández FD, Vega CA, González PR
Language: Spanish
References: 18
Page: 30-40
PDF size: 319.03 Kb.
ABSTRACT
In this paper, the isotropic and orthotropic models of the tympanic membrane (with and without hammer bone) are studied. The method used in this paper is based on the finite element method. The tympanic membrane form was obtained by a digitalization of human tympani. This part of the ear was collected from a dead body. The process was performed with a XYZ «touching machine» interconnected to the so called coordinate machine. The finite element software may include the material properties that characterize each section of the tympanic membrane, the boundary conditions describing the contact between the tympanic membrane and the temporal bone as well as the hammer bone. In this study, it was established the behavioral differences between three different models. This work tries to contribute to tympanic membrane knowledge. The final idea behind this result is to design biomedical devices that can reproduce its performance.
REFERENCES
Mach E, Kessel J. Beitrage zur Topography und Mechanik des Mittelohres. Sitzungsber. Akad. Wiss. Wien (Math Phys K1.) 1874; Abt. 3,69: 221-243.
Helmholtz H. The mechanism of the ossicles of the ear and tympanic membrane. Pflugers Arch Physiol (Bonn) 1868; 1: 1-60.
Dahmann H. Zur Phiysiologie des Horens; experimentelle Untersuchungen uber die Mechanik der Gehorknochelchenkette, sowie uber deren Verhalten auf ton und Luftdruk, teil I. Z. Hals Nas. Ohrenheilk. 1929; 24: 462-498.
Von Békesy G. On the measurement of the amplitude of vibration of the ossicles with a capacitive probe. Akustishe Zeitschrift 1941; 6: 1-16.
Tonndorf J, Khanna SM. Tympanic membrane vibrations in human cadaver ears studied by time averaged holography. Journal of Acoustical Society of America 1972; 52: 1221-1233.
Willemin JK, Dandliker R, Khanna SM. Heterodyne interferometer for submicroscopic vibration measurements in the inner ear. J Acoust Soc Am 1988; 83: 787-795.
Decraemer WF, Maes MA, Vanhuyse VJ. An elastic stress–strain relation for soft biological tissues based on a structural model. Journal of Biomechanics 1980; 13: 463-468.
Zwislocki JJ. Analysis of the middle-ear function. Part I: Input impedance. J Acoust Soc Am 1962; 34(8, Pt 2): 1514-1523.
Matthews J W. Modeling reverse middle ear transmission of acoustic distortion signals (Delft U. P., The Netherlands), 1983: 11-18.
Shaw EAG, Stinson MR. Network concepts and energy flow in the human middle ear. J Acoust Soc Am 1981; 69: S44.
Shaw EAG, Stinson MR. The human external and middle ear: Models and concepts (Delft, The Netherlands), 1983: 3-10.
Fay J, Sunil Puriaa, Willem F. Decraemer, Charles Steelea, Three approaches for estimating the elastic modulus of the tympanic membrane. Journal of Biomechanics 2005; 38: 1807-1815.
Gaihede M. Donghua Liao and Hans Gregersen, In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears. Phys Med Biol 2007; 52: 803-814.
Martínez-Celorio RA, Rodríguez BH, Rodríguez CRA, Castro-Sánchez R, Martí-López L, Vega CA. Análisis de modos normales de vibración en los modelos isotrópico y ortotrópico de la membrana timpánica, RMIB 2007; XXVIII(2): 83-91.
Ansys®. “Release Notes”, Ansys INC., 2006.
Ross CTF. Finite element. Methods in engineering science, Ellis Harwood., England, (1990).
Ferris P, Prendergast PJ. Middle-ear dynamics before and after ossicular replacement. Journal of Biomechanics 2000; 33: 581-590.
Vallejo LA, Delgado VM, Hidalgo A, Gil-Carcedo E, Gil-Carcedo LM, Montoya F. Modelado de la geometría del conducto auditivo externo mediante el método de los elementos finitos. Acta Otorrinolaringología Esp 2006; 57: 82-89.