2010, Number 2
<< Back Next >>
Gac Med Mex 2010; 146 (2)
Vías de señalización implicadas en la megacariopoyesis
González-Villalva AE, Falcón-Rodríguez CI, Fortoul-van der Goes TI
Language: Spanish
References: 68
Page: 136-143
PDF size: 161.80 Kb.
ABSTRACT
Hematotoxicology has been studied with less interest than other fields associated with atmospheric pollution. There is limited knowledge about on the effects that certain atmospheric pollutants may provoke in the blood and bone marrow. Suspended particle pollution has become an area of scientific inquiry due to the contaminants adhering to its surface. We have identified the association of inhaled vanadium and variations in megakaryopoyesis and thrombopoyesis. Platelets are the smallest elements in the blood, but they play a strategic role in hemostasis. They are derived from the largest cell of the bone marrow, the megakaryocite. This cell size is about 150µm, with a polyploid nucleus and unknown origin until few years ago. When TPO was cloned in 1994 the knowledge about megakaryocyte began to growth exponentially, elucidating the mechanisms of proliferation, differentiation and release of platelets. More information is still needed in order to translate knowledge into clinical application for diseases such as thrombocytopenia or thrombocytosis. A review of the current concepts of megakaryopoiesis and its regulation, with emphasis on signaling pathways are presented in this paper; a classification in TPO-dependent and TPO-independent is also detailed. In addition, we review some diseases associated with changes in the signaling pathway of megakaryopoyesis, as well as possible perspectives in this field, including toxicology.
REFERENCES
Fortoul TI, Rojas-Lemus M. Vanadium as an air pollutant En: Vanadium: Its impact on health. New York: Nova Science Pub; 2007. pp. 1-6.
González-Villalva A, Ávila-Costa MR, Piñón-Zárate G, Rodríguez-Lara V, Martínez-Levy G, Rojas-Lemus M, et al. Thrombocytosis induced in mice after subacute and subchronic V2O5 inhalation. Toxicol Industrial Health 2006;22:113-116.
Díaz-Bech P, Piñón-Zárate G, Díaz-Bech ME, Fortoul TI. The hematopoietic system and vanadium toxicity. En: Vanadium: Its impact on health. New York: Nova Science Pub; 2007. pp. 43-50.
Fortoul TI, Piñón-Zárate G, Díaz-Bech ME, González-Villalva A, Mussali- Galante P, Rodríguez-Lara V, et al. Spleen and bone marrow megakaryocytes as targets for inhaled vanadium. Histol Histopathol 2008;23:1321-1326.
Fortoul TI, González-Villalva A, Piñón-Zárate P, Rodríguez-Lara V, Montaño LF, Saldívar L. Ultrastructural megakaryocyte modifications after vanadium inhalation in Spleen and bone marrow. J Electron Microscopy 2009;58(6):375-380.
González-Villalva A, Rodríguez-Lara V, Montaño LF, Lima-Melo A, Ramírez G, Fortoul TI. Blood changes generated after vanadium inhalation. Current Trends in Toxicology 2010.
Gupta GP, Massagué J. Platelets and metastasis revisited: a novel fatty link. J Clin Invest 2004;114:1691-1693.
Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 2005;115:3339-3347.
Andrews R, Berndt M. Platelet physiology and thrombosis. Thrombosis Res 2004;114:447-453.
Thawlow E, Erikssen J, Sandvik L, Stormorken H, Cohn P.F. Blood platelet count and function related to total and cardiovascular death in apparently healthy men. Circulation 1991;84:613-617.
López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998;91:4397-418.
Zucker-Franklin D, Philipp CS. Platelet production in the pulmonary capillary bed: New ultrastructural evidence for an old concept. Am J Pathol 2000;157:69-74.
Mayani H, Flores-Figueroa E, Pelayo R, Montesinos JJ, Flores-Guzmán P, Chávez-González A. Hematopoyesis. Cancerologia 2007;2:95-107.
Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of Flt3+ lympho-mieloid ítem cells lacking erythro-megakaryocytic potencial: a revised road map for adult blood lineage commitment. Cell 2005;121:295-306.
Mc Donald T, Sullivan P. Megakarocytic and erythrocytic cell lines share a common precursor cell. Exp Hematol 1993;21:1316-1320.
Hunt P. A bipotential megakaryocyte/erythrocyte progenitor cell: the link between erythropoiesis and megakaryopoiesis becomes stronger. J Lab Clin Med 1995;125:303-304.
Debili N, Coulombel L, Croisille L. Characterization of a bipotent erythromegakaryocytic progenitor in human bone marrow. Blood 1996;88:1284-1296.
Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood 2004;104:2722-2727.
Italiano JE, Hartwig JH. Megakaryocyte development and platelet formation. En: Michelson AD, editor. Platelets. Second edition. Canada: Academic Press; 2007. pp. 23-44.
De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002;100:1310-1317.
Radley JM, Scurfield G. The mechanism of platelet release. Blood 1980;56:996-999.
Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 1995;85:402-413.
Italiano JE Jr, Lecine P. Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999;147:1299-1312.
Geddis AE, Kaushansky K. The root of platelet production. Science 2007;317(5845):1689-1691.
Geddis AE, Linden HM, Kaushansky K. Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Reviews 2002;13:61-73.
Marcucci R, Romano M. Thrombopoietin and its splicing variants: structure and functions in thrombopoiesis and beyond. Bioch et Biophys Acta 2008;1782:427-432.
Wendling F, Varlet P, Charon M, Tambourin P. A retrovirus complex inducing an acute myeloproliferative leukemia disorder in mice. Virology 1986;149:242-246.
Vigon I, Mornon JP, Cocault L, Mitjavila MT, Tambourin P, Gisselbrecht. Molecular cloning and characterization of MPL the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci USA 1992;89:5640-5644.
Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 1994;369: 568-571.
Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor c-Mpl. Cell 1994;77:1117-1124.
Zhou W, Toombs CF, Zou T, Guo J, Robinson MO. Transgenic mice overexpressing human c-mpl ligand exhibit chronicthrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood 1997;89:1551-1559.
Kuter DJ. Thrombopoietin: biology and clinical applications. Oncologist 1996;1:98-106.
Miyakawa Y, Oda A, Druker BJ, Miyazaki H, Handa M, Ohashi H, Ikeda Y. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood 1996;87:439-446.
Kuter DJ, Rosenberg RD. The reciprocal relationship of thrombopoietin (c- Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 1995;85:2720-2730.
Kaser A, Brandacher G, Steurer W, Kaser W, Offner FA, Zoller H, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001;98:2720-2725.
Drachman J, Sabath D, Fox N, Kaushansky K. Thrombopoietin signal transduction in purified murine megakaryocytes. Blood 1997;89:483-492.
Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of JAK2, Shc and c-Mpl. J Biol Chem 1995;270:4979-82.
Kirito K, Fox N, Kaushansky K. Thrombopoietin stimulates expression of HoxB4: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood 2003;102:3172-3178.
Kirito K, Fox N, Kaushansky K. Trombopoietin induces the nuclear translocation of HoxA9 in hematopoietic stem cells (HSC): a potential explanation for the favorable effects of TPO on HSCs. Moll Cell Biol 2004;24:6751-6762.
Rojnuckarin P, Drachman JG, Kaushansky K. Thrombopoietin induced activation of the mitogen activated protein kinase pathway in normal megakaryocytes: role in endomitosis. Blood 1999;94:1273-1282.
Van Willigen G, Gorter G, Akkerman JW. Thrombopoietin increases platelet sensitivity to alpha-thrombin via activation of the ERK2 cPLA2 pathway. Thromb Haemost 2000;83:610-616.
Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood 2005;105:4187-4190.
Kozuma Y, Kojimas H, Yuki S, Suzuki H, Nagasawa T. Continuous expression of Bcl-xL protein during megakaryopoiesis is post-translationally regulated by thrombopoietin-mediated Akt activation, which prevents the cleavage of Bcl-xL. J Thromb Haemost 2007;5:1274-1282.
Rawlings J, Rosler K, Harrison D. The JAK/STAT signaling pathway. J Cell Science 2004;117:1281-183.
Tong W, Lodish H. Lnk Inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004;5:569-580.
Takizawa H, Eto K, Yoshikawa A, Nakauchi H , Takatsu K, Takaki S. Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Experimental Hematol 2008;36:897-906.
Lanutti B, Drachman J. Lyn tyrosine kinase regulates thrombopoietininduced proliferation of hematopoietic cell lines and primary megakaryocytic progenitors. Blood 2004;103:3736-3743.
Hitchcock I, Fox N, Pre’vost N, Sear K, Shattil S, Kaushansky K. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage-specific FAK knockout. Blood 2008;111:596-604.
Ihara K, Ishii E, Eguchi M, Takada H, Suminoe A, Good R, Hara T. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 1999;96:3132-136.
Van den Oudenrijn S, Bruin M, Folman C, Peters M, Faulkner LB, de Haas M, von dem Borne AE KR. Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 2000;110:441-448.
Ballmaier M, Germeshausen M, Krukemeier S, Welte K. Thrombopoietin is esencial for the manteinance of normal hematopoyesis in humans: development of aplastic anemia in patients with congenital amegakaryocytic trombocitopenia. Ann N Y Acad Sci 2003;996:17-25.
Ghilardi N, Skoda RC. A single-base deletion in the thrombopoietin (TPO) gene causes familial essential thrombocythemia through a mechanism of more efficient translation of TPO mRNA. Blood 1999;94:1480-82.
Ding J, Komatsu H, Wakita A, Kato-Uranish Mi, Ito M, Satoh A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, wich encodes for the receptor for thrombopoietin. Blood 2004;103:4198-4200.
Barbui T. The leukemia controversy in myeloproliferative disorders: is it a natural progresion of disease, a secondary sequela of therapy or a combination of both? Semin Hematol 2004;41:15-17.
Basser R. The impact of thrombopoietin on clinical practice. Curr Pharm Des 2002;8:369-377.
Majka M, Janowska-Wiezorek A, Ratajczak J, Kowalska A, Vilarie G, Pan ZK, et al. Stromal-derived factor-1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 2000;96:4142-4151.
Avecilla ST, Hattoori H, Heissig B, Tejada R, Liao F, Shido K, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004;10:64-71.
Slayton WB, Wainman DA, Li XM, Hu Z, Jotwani A, Cogle CR, et al. Developmental differences in megakaryocyte maturation are determinated by the microenvironment. Stem Cells 2005;23:1400-1408.
Sun Li, Ying Khee Hwang W, Eng Aw S. Biological characteristics of megakaryocytes: Specific lineage commitment and associated disorders. Int J Biochem Cell Biol 2006;38:1821-1826.
Zheng C, Yang R, Han Z, Zhou B, Liang L, Lu M. TPO-Independent Megakaryocytopoiesis. Crit Rev Onco Hematol 2008;65:212-222.
Lee B, Ratajczak J, Doms RW, Gerwitz AM, Ratajczak MZ. Coreceptor/chemokine receptor expression on human hematopoietic cells: biological implications for human immunodeficiency virus-type 1 infection. Blood 1999; 93:1145-1156.
Deutsch VR, Tomer A. Megakaryocyte development and platelet production. Br J Haematol 2006;134:453-466.
Pang L, Weiss MJ, Poncz M. Megakaryocyte biology and related disorders. J Clin Invest 2005;115:3332-3338.
Orazi A, Cooper RJ, Tong J, Gordon MS, Battiato L, Sledge GW Jr, et al. Effects of recombinant human interleukin-11 (Neumega rhIL-11 growth factor) on megakaryopoiesis in human bone marrow. Exp Hematol 1996;24:1289-1297.
Jeanpierre S, Nicolini FE, Kaniewski B, Dumontet B, Rimokh R, Puisieux A, et al. BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling. Blood 2008;112:3154-63.
Genever P, Wilkinson D, Patton A, Peet M, Hong Y, Mathur A, et al. Expression of a Functional N-Methyl-D-Aspartate-Type Glutamate Receptor by Bone Marrow Megakaryocytes. Blood 1999;93:2876-2883.
Hitchcock IS, Skerry TM, Howard MR, Genever PG. NMDA receptor-mediated regulation of human megakaryocytopoiesis. Blood 2003;102(4):1254-1259.
Skerry TM, Genever PG. Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 2001;22:174-81.