2010, Number 2
<< Back Next >>
Gac Med Mex 2010; 146 (2)
Caracterización fenotípica de Staphylococcus epidermidis aislado de pacientes con endoftalmitis
Ruiz-Galindo E, Martínez-Canseco C, López-Revilla R
Language: Spanish
References: 44
Page: 112-117
PDF size: 146.34 Kb.
ABSTRACT
Objective: To carry out the phenotypic characterization of
Staphylococcus epidermidis isolated from endophthalmitis developed after cataract extraction and implantation of an intraocular lens. This bacteria produces a biofilm, adheres to polystyrene and host proteins such as collagen and fibronectine, significant virulence factors.
Methods: Five
S. epidermidis strains were isolated from cases of endophthalmitis, they developed after crystalline extraction and implantation of an intraocular lens. We assessed if these strains adhere to polystyrene, to Type I collagen and to fibronectine and if bacteria produced biofilm. Finally, the bacterial surface proteins were obtained and analyzed using polyacrylamide gel electrophoresis.
Results: All five bacterial strains adhered to polystyrene, with a maximum adherence time of 105 min; they also displayed adherence to fibronectine but only two to collagen. Only two strains were weak biofilm producers. We identified proteins that by molecular weight are similar to those identified in the literature as proteins binding to biomaterials.
Conclusions: As the strains that we studied were not biofilm-forming they should be considered as non-pathogenic. Nevertheless, they meet the initial criteria of pathogenicity and adherence, aside from being isolated from an intraocular infectious process and being able to provoke endophtalmitis when inoculated in rabbit eyes.
REFERENCES
Rowsey JJ, Newson DL, Sexton DJ, Harms WK. Endophthalmitis: current approaches. Ophthalmol 1982;89:1055-1066.
Kodjikain L, Roques C, Campanac C, Doleans A, Baillif S, Pellon G, et al. Biofilms ŕ Staphylococcus epidermidis ŕ la surface des implants intraoculaires. J Fr Ophtalmol 2005;28:224-230.
Tenover FC, Arbeit RD, Goering RV. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis : criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-2239.
Bannerman TL, Rhoden DL, McAllister SK, Miller JM, Wilson LA. The source of coagulase-negative staphylococci in the endophthalmitis vitrectomy study. Arch Ophthalmol 1997;115:357- 361.
Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002;4:481-489.
Domingo P, Fontanet A. Management of complications associated with totally implantable ports in patients with Aids. AIDS Patient Care STDS 2001;15:7-13.
Ziebuhr W. Staphylococcus aureus and Staphylococcus epidermidis: emerging pathogens in nosocomial infections. Contrib Microbiol 2001;8:102-107.
Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994;19:231-245.
Kloos WE, Bannerman TL. Update on clinical significance of coagulasenegative Staphylococci. Clin Microbiol Review 1994;7:117-140.
Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producting strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982;37:318-326.
Christensen GD, Simpson WA, Bisno AL, Beachey EH. Experimental foreign body infections in mice challenged with slime-producting Staphylococcus epidermidis. Infect Immun 1983;40:407-410.
Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulaseegative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol 1985;22:996-1006.
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284:1318-1322.
Costerton JW, Lewandowski Z, Calddwell DE, Korber DR, Lappen-Scott HM. Microbial biofilms. An Rev Microbiol 1995;49:711-745.
Heilmann Ch, Gerke Ch, Perdreau-Remington F, Götz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 1996;64:277-282.
Gerke Ch, Kraft A, Süssmuth R, Schweitzer O, Götz F. Characterization of the N-Acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 1998; 273:18586-18593.
Mack D. Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect 1999; 43 (Supplement): S113-S125.
Frebourg NB, Lefebvre S, Baert S, Lemeland JF. PCR-based assay for descrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 2000;38:877-880.
Galdbart JO, Allignet J, Tung H, Ryden C, El Solh N. Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis 2000;182: 351-355.
García P, Benítez R, Lam M, Salinas AM, Wirth H, Espinoza C, et al. Coagulase-negative staphylococci: clinical, microbiological and molecular features to predict true bacteraemia. J Med Microbiol 2004;53:67-72.
Patti JM, Höök M. Microbial adhesins recognizing extracellular matrix macromolecules. Current Opinion Cel Biol 1994; 6:752-758.
Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogenbinding protein of Staphylococcus epidermidis. Infect Immun 1998;66:2666-2673.
Bowden MG, Heuck AP, Ponnuraj K, Kolosova E, Choe D, Gurusiddappa S, et al. Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 2008;283:638-647.
Von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase negative staphylococci. Lancet Infect Dis 2002;2:677-685.
McCann MT, Gilmore BF, Gorman SP. Staphylococcus epidermidis devicerelated infections: pathogenesis and clinical management. J Pharmac Pharmacol 2008;60:1551-1571.
Hall AE, Patel PR, Domanski PJ, Prater BD, Gorovits EL, Syribeys PJ, et al. A panel of monoclonal antibodies recognizing the Staphylococcus epidermidis fibrinogen-binding MSCRAMM SdrG. Hybridoma 2007;26:28-34.
Williams RJ, Henderson B, Sharp LJ, Nair SP. Identification of a fibronectin- binding protein from Staphylococcus epidermidis. Infect Immun 2002;70:6805-6810.
Bowden MG, Visai L, Longshaw CM, Holland KT, Speziale P, Hook M. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesion? J Biol Chem 2002;277:43017-43023.
Veenstra GJ, Cremers F, Van Dijk H, Fleer A. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol 1996;178:537-541.
Timmerman CP, Fleer A, Besnier JM, De Graaf L, Cremers F, Verhoef J. Characterization of a proteinaceous adhesin of Staphylococcus epidermidis wich mediates attachment to polystyrene. Infect Immun 1991;59:4187-4192.
Patel JD, Ebert M, Ward R, Anderson JM. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res 2007;82A:742-751.
Pinna A, Zanetti S, Sechi LA, Usai D, Falchi MP, Carta F. In vitro adherence of Staphylococcus epidermidis to polymethyl methacrylate and acrysof intraocular lenses. Ophthalmol 2000;107:1042-1046.
Kodjikain L, Burillon C, Chanloy C, Bostvironnois V, Pellon G, Mari E, et al. In vivo study of bacterial adhesion to five types of intraocular lenses. Invest Ophthalmol Vis Sci 2002;43:3717-3721.
Wolz Ch, Mc.Devitt D, Foster TJ, Cheung AL. Influence of agr on fibrinogen binding in Staphylococcus aureus Newman. Infect Immun 1996;64:3142-3147.
Guo B, Zhao X, Shi Y, Zhu D, Zhang Y. Pathogenic implication of a fibrinogen-binding protein of Staphylococcus epidermidis in a rat model of intravascular-catheter-associated infection. Infect Immun 2007;75:2991-2995.
Montanaro L, Arciola CR, Borsetti E, Collamati S, Baldassarri L. Detection of fibronectin-binding protein genes in Staphylococcal strains from periprosthesis infections. Microbiol 1999;22:331-336.
Ammendolia MG, Di Rosa R, Montanaro L, Arciola CR, Baldassarri L. Slime production and expression of the slime-associated antigen by Staphylococcal clinical isolates. J Clin Microbiol 1999;37:3235-3238.
Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 1999;67:2627-2632.
O’Gara JP, Humphreys H. Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 2001; 50:582-587.
Duggirala A, Kenchappa P, Sharma S, Peeters JK, Ahmed N, Garg P, et al. High-resolution genome profiling differentiated Staphylococcus epidermidis isolated from patients with ocular infections and normal individuals. Invest Ophthalmol Vis Sci 2007;48:3239-3245.
Ziebuhr W, Heilman C, Götz F. Detection of the intercellular adhesion gene clu(ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 1997;65:890-896.
Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catéterassociated infections. J Clin Microbiol 2001;39:2151-2156.
Baldassari L, Donelli G, Gelosia A, Simpson AW, Christensen GD. Expression of slime interferes with in vitro detection of host protein receptors of Staphylococcus epidermidis. Infect Immun 1997;65:1522-1526.
Hussain M, Herrmann M, Von Eiff Ch, Perdreau-Remington F, Peters G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 1997;65:519-524.