2009, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2009; 30 (2)
Monitoring developing microorganisms
Olguín-Sánchez RA, Rojas-Rendón JA, Díaz-Campillo MJ, Salazar Y
Language: Spanish
References: 18
Page: 98-108
PDF size: 370.19 Kb.
ABSTRACT
Nowadays, the supervising of biological process is trying to use the time and production costs optimization. This process involves the microorganism monitoring throughout the biomass growing stages. Therefore, the objective of this study is to obtain the time behavior of the biomass concentrations as function of the impedance changes: both in the magnitude (|Ζ|) and in the phase (Φ). The impendance was monitored by the electrical impedance spectroscopy (eis). To do this, a measurement system was implemented using a lcr impedance-meter and a front-end. The measurement technique uses an eis with four poles. The frequencies used in the system are within the range of 20 hz a 200 khz. Three different culture media were used to perform the monitoring: distilled water, nutrients broth and nutrients broth strengthen with inoculums of the yeast known as saccharomyces cerevissiae. The eis measurements were validated trough the microorganism counting performed in a neubauer chamber. The achieved results shown that the inoculated broth has a change of 2.1% and 0.05° regarding to the Δ|Ζ| and Δ Φ respectively in the delay phase. The growing phase has changes of 9.6% and -0.15° in the same variables while the steady state phase showed different values: 1.3% and -0.04°. The death stage was characterized by changes of 3.35% and -0.1° in the same impedance elements. These variations were obtained with respect to the nutrients broth. The time evolution of Δ|Ζ| and Φ measured with a frequency of 200 khz has a correlation index of 0.95 with respect to the cell’s counting. Therefore, the on-line monitoring of the microorganism concentration using the eis method seems to be a viable method to determine and visualize the different developing stages of cells cultures.
REFERENCES
Bragós R, Sarro E, Fontova A, Soley A, Cairó J, Bayés-Genís A, Rosell J. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 2106-9.
Rodríguez AAC, Cabrera LAI, Valencia Flores. Diseño y construcción de los instrumentos de medición para un biorreactor prototipo. Revista Mexicana de Ingeniería Biomédica 2003; XXIV(1): 55-70.
Meneses MA, Rojas RL, Sifontes RS, López BY, Sariego RI. Aplicación de un método alternativo al conteo en cámara de Neubauer para determinar la concentración de Trichomonas vaginalis. Revista Cubana Medicina Trop 2001; 53(3): 180-188.
Gemini V, Correa E, Gallegos A, Korol S. Degradación microbiana de 2,4-dinitrofenol en efluentes líquidos: efecto de factores bióticos y abióticos. Higiene y Sanidad Ambiental 2008; 8: 320-324.
Monge-Amaya O, Valenzuela-García JL, Acedo-Félix E, Certucha-Barragán MT, Almendáriz-Tapia FJ. Biosorción de cobre en sistema por lote y continuo con bacterias aerobias inmovilizadas en zeolita natural (clinoptilolita). Revista Internacional de Contaminación Ambiental 2008; 24(3): 107-115.
Ferrer JR, Davalillo Y, Chandler C, Páez G, Mármol Z, Ramones E. Producción de proteína microbiana a partir de los desechos del procesamiento de la caña de azúcar (bagacillo). Archivos Latinoamericanos de Producción Animal 2004; 12(2): 59-65.
Ivora A. Bioimpedance monitoring for physicians: an overview. Centre Nacional de Microelectrónica, Biomedical Applications Group. 2002.
Felice CJ, Clavin OE, Gallo B del V, Armayor MR, Spinelli JC, Valentinuzzi ME. Impedancimetric bacterial detection: theoretical and experimental aspects. Medical Progress Through Technology 1988; 14: 25-33.
Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. 2004. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. Dept. of Dermatology, Karolinska Univ. Hosp., Huddinge, Sweden.
Valenzuela R. Caracterización de materiales por espectroscopia de impedancias. Revista Cubana de Física 2002; 19(2): 81-84.
Bragós R, Eleviar J, Bujan J, Urpi P, Riu PJ, Rosell J. Distributed biomass density measurement system for a yeast production factory. Procc. ICEBI 2004 - XII international conference on electrical bioimpedance & v electrical impedance tomography. IEEE 2004: 49-52.
Schwan HP. Electrical properties of tissue and cell suspensions. In: Lawrence JH, Tobias CA. (ends) Advances in biological and medical Physics New York: Academic Press. 1957.
López G, Madrid y Carmelo JREF. Medidor de biomasa por espectroscopia dieléctrica. Dpto. de Bioingeniería – INSIBIO, CONICET – FACET, UNT - CC 327 (4000) Tucumán, Argentina.
Harris CM, Todd RW, Bungard SJ, Lovitt RW, Moris G, Kell DB. Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb Tech 1987; 9: 181-186.
Elvira J, Bujan J, Urpí P, Bragós R. Medida en línea de biomasa viable mediante el uso de Espectroscopia de Impedancia Eléctrica» XII ICEBI Conference. Viena, 2004.
Hashimoto H, Miike H, Ebina Y, Miyaji T. A method detecting bacteria in culture medium by simultaneous measurement of electrical impedance and turbidity. Technology Reports of the Yamaguchi University 1979; 2(3): 291-299.
Mar-Luna Felix, Gamero-Inda Eduardo. 2008. Sensor por Software para la estimación del crecimiento de biomasa en bioprocesos. Congreso Internacional de Eléctrica y Electrónica, Chihuahua, Chihuahua.
Soley A, Lecina M, Gmeza X, Cair´o JJ, Riu P, Rosell X, Bragòs R, Gòdia F. On-line monitoring of yeast cell growth by impedance spectroscopy. Journal of Biotechnology 2005; 118(4): 398-405.