2009, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2009; 30 (2)
Development of low friction coefficient hypodermic needles for pain reduction
Rodríguez LJM, Arellano CJA, Navarro TJ, Reyes GS, Abúndez PA, Vargas TM
Language: Spanish
References: 21
Page: 85-91
PDF size: 213.44 Kb.
ABSTRACT
Drugs and other substances are generally applied through hypodermic needles. Pain is felt during the insertion of the needle into the body. This pain is attributed to shear, friction, and adhesive forces generated during the insertion. The present work shows the coating process by grinding and their application on the manufacturing of low frictional hypodermic needles. Resistance test on ballistic gel showed a reduction of friction coefficient and because of it the improvement needle insertion into soft tissues thus, in consequence reducing the pain sensation.
REFERENCES
Senel S, Hincal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release, 2001.
Hwan PJ. Polymeric microneedles for transdermal drug delivery, Ph.D. Thesis, Atlanta, Georgia Institute of Technology, 2004.
Arendt-Nielsen L, Henrik E, Peter B. Pain following controlled cutaneous insertion of needles with different diameters. Somatosensory & Motor Research 2006; 23(1-2): 37-43.
Egekvist H, Bjerring P, Arendt-Nielsen L. Pain and mechanical injury of human skin following needle insertions. Eur J Pain 1999; 3(1): 41-49.
Schneider LW, Peck LS, Melvin JW. Penetration characteristics of hypodermic needles in skin and muscle tissue. Phase I (Appendices B-E), Final report, Highway Safety Research Institute, Ann Arbor, MI; 1978. Persistent URL http://hdl.handle.net/2027.42/614
Kataoka H. Measurement of the tip and friction force acting on a needle during penetration. Fifth International Conference on Medical Image Computing and Computer Assisted Intervention – MICCAI 2002, Lecture Notes in Computer Science, T. Dohi and R. Kikinisi, Eds. 2002; 2488: 216-233.
Davis SP. Hollow microneedles for molecular transport across skin, Ph. D. Thesis, Georgia Institute of Technology, 2003.
Martines PF. La tribología, su importancia y desarrollo en el mundo en cuba. Tendencias en las investigaciones y su aplicación. Ed. LIMUSA, 1997.
Cowan SR, Ward OW. Surface engineering and enigma of choices. Journal Of Phys 1992: A285-A291.
Dingley DJ. The Nagy coating process. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1 TL, United Kingdom 1993.
Rodríguez LJM, Abúndez PA, Abúndez PSJC, Chinchilla G. Evaluación del desgaste de prótesis cerámicas de cadera recubiertas con DLC por triboadhesión. Parte I - diseño de la máquina de deposición y desgaste. Revista Mexicana de Ingeniería Biomédica 2006; 26(1): 16-22.
Tien-Chien Jen. An improved transient model of tool temperatures in metal cutting. Journal of Manufacture Science and Engineering 1999; 123: 30.
Shaw MC. Metal cutting principles, Clarendon press, 1997.
Thomas C. Metal machining: Theory and applications. John Wiley and Sons, 2000.
Ueda T, Sato M, Nakayama K. Cooling characteristics of the cutting grains in grinding. Annals of the CIRP, 1996, 45(1): 293–298.
Marinescu ID et al. Tribology of abrasive machining process. William Andrew publishing, 2004.
Gale WF. Smithells metals referent book. ASM The Materials Information Society, 2004.
Shergold O. The mechanics of needle-free injection, in Department of Mechanical Engineering. 2004, Cambridge University: Cambridge. p. 200.
Schneider LW, Peck LS, Melvin JW. Penetration characteristics of hypodermic needles in skin and muscle tissue. Becton-Dickinson and Company Report 1978.
Wood JN et al. The primary nociceptor: special functions, special receptors. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (eds). Progress in pain research and management 2000; 16: IASP Press, Seattle, 47-62.
Merskey H, Bogduk N. Classification of chronic pain. IASP Press, Seattle, 1994: 210.