2009, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2009; 30 (1)
Electrical properties measurement of human blood using coplanar microelectrodes array
Prado OJ, Gómez R, Díaz CJ,Padilla MJA, Nadi M
Language: Spanish
References: 20
Page: 18-24
PDF size: 219.85 Kb.
ABSTRACT
This paper describes results in electrical properties measurement of human blood based on a platinum microelectrodes array, manufactured with electronic lithographic technique, and an impedance meter. The measurement frequency range was from 100 Hz up to 1 MHz and controlled blood temperature of 37 ±0.5 C. According with the experimental results in order to obtain the expected electrical properties values the polarization impedance effects must be taken into account. Such impedance effects were simulated in this work through an electrical model. The obtained data also show that for low measurement frequencies both the dielectric constant and the electric conductivity values of human blood are strongly influenced by the measurement cell geometry and parasite capacitances. The experimental results obtained for low and high measurement frequency values are compared with the results reported by other authors.
REFERENCES
Gersing E, Kelleher DK, Vaupe P. Tumourtissue monitoring during males photodynamic and Hyperthueron ermic treatment using bioimpedance Spectroscopy. Physiol Meas 2003; 24: 625-637.
Cole KS. Membranes, ions, and impulses. Classical Biophysics, editor University of California Press (Berkeley, CA), 1972.
Settle RG, Foster KR, Epstein BR, Mullen JL. Nutritional assessment: whole body impedance and body fluid compartments. Nutr Cancer 1980; 2: 72-80.
Lewis GS, Aizinbud E, Lehrer AR. Changes in electrical resistance of vulvar tissue in Holstein cows during ovarian cycles and after treatment with prostaglandin F2a. Anim Reprod Sci 1989; 18: 183-197.
Zhang MIN, Stout DG, Willison JHM. Electrical impedance analysis in plant tissues: symplasmic resistance and membrane capacitance in the Hayden model. J Exp Bot 1990; 41: 371-380.
Zhang MIN, Willison JHM. Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 1991; 42: 1465-1475.
Osterman KS, Hoopes PJ, DeLorenzo C, Gladstone DJ, Paulsen KD. Non-invasive assessment of radiation injury with electrical impedance spectroscopy. Phys Med Biol 2004; 49(5): 665-683.
Prado J. Conception et realisation d’un microsystème par spectroscopie de bioimpedance. Tesis Doctoral, Nancy Francia, 2006.
Wise K.D. Integrated sensors, microactuators, and microsystems (MEMS). Proc IEEE 1998; 86: 1531-1746.
Manz A, Becker H. Microsystem Technology in Chemistry and Life. Sciences Springer (New York) 1999.
Whitesides GM, Ostuni E, Takayam S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001; 3: 335-373.
Thielecke H, Mack A, Robitzki A. Living Chips: Cell sensors for toxicity and therapeutical biomonitoring. Germany Proc of Micro Tec 2000.
Ziaie B, Baldi B, Lei M, Gu Y, Siegel RA. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advance Drug Delivery 2004; 56: 145-172.
Prado OJ, Padilla MJA, Díaz CJ, Nadi M. Caracterización de un microsensor por espectroscopia electroquímica de impedancia RMIB-12-21; 2007.
Ivorra A, Gomez R, Noguera N, Villa R, Sola A, Palacios et al. Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosensors Bioelectron 2003; 19: 391-399.
Prado J. Conception et realisation d’un microsystème par spectroscopie de bioimpedance”. Tesis Doctoral, Nancy Francia, 2006.
Jaspard F. Caractérisation diélectrique du sang par spectroscopie de bioimpédance dans la bande [1MHz – 1GHz]: Conception et realization d’une cellule de mesure, Thesis, Henri Poincaré University, Nancy 1. 2001.
Schwan HP. Uber die Niederfrequenz-Leitfahigkeit von Blut und Nlutserum bei verschiedenen temperaturen’. Z Ges Exp Med 1941; 119: 531.
Fricke H, Curtis HJ. The electric impedance of hemolyzed suspension of mammalian erythrocytes. J Gen Physiol 1935; 18(6): 821.
Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissue. Phys Med Biol 1996c; 41: 2271-2293.