2004, Number 4
<< Back Next >>
Rev Biomed 2004; 15 (4)
Prediction of the abundance and rate of infection of Triatoma dimidiata: a map of the natural transmission risk for Chagas disease in the Yucatan Peninsula, Mexico
Dumonteil E, Gourbière S
Language: Spanish
References: 39
Page: 221-231
PDF size: 180.98 Kb.
ABSTRACT
Chagas disease is a major public health problem in Latin America, caused by the protozoan parasite
Trypanosoma cruzi and transmitted by hematophagous insects from the Triatominae subfamily. Control is based on domestic vector control with insecticides and housing improvement. As with other vector-borne diseases, the identification of areas of high risk of disease transmission is a major prerequisite for the planning and implementation of cost-effective control programs. In this study, we explored the relationship between the geographic distribution of
Triatoma dimidiata and bioclimatic factors in the Yucatan peninsula in Mexico, using geographic informational systems and developed predictive models of
T. dimidiata domestic abundance and of its infection rates by
T. cruzi. These predictions were then used to build the first natural transmission risk map for Chagas disease in the Yucatan peninsula, a tool that should prove very valuable for the implementation of effective vector control programs in the region.
REFERENCES
WHO. Chagas disease. Progress towards eliminatión of transmissión. Wkly Epidemiol Rec 1996; 71:12-5.
Dumonteil E. Update on Chagas' disease in Mexico. Salud Publica Mex 1999;41:322-7.
WHO. Chagas disease: Central American initiative launched. TDR News 1998;6.
Dumonteil E, Gourbiere S, Barrera-Perez M, Rodriguez-Felix E, Ruiz-Piña H, Baños-Lopez O, Ramirez-Sierra MJ, Menu F, Rabinovich JE. Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatán península of Mexico. Am J Trop Med Hyg 2002; 67:176-83.
Ramsey JM, Ordonez R, Cruz-Celis A, Alvear AL, Chavez V, Lopez R, Pintor JR, Gama F, Carrillo S. Distribution of domestic triatominae and stratification of Chagas Disease transmission in Oaxaca, Mexico. Med Vet Entomol 2000; 14:19-30.
Zeledon R, Ugalde JA, Paniagua LA. Entomological and ecological aspects of six sylvatic species of triatomines (Hemiptera, Reduviidae) from the collection of the National Biodiversity Institute of Costa Rica, Central America. Mem Inst Oswaldo Cruz 2001; 96: 757-64.
Galvao C, Jurberg J, Carcavallo RU, Segura CA, Galindez Giron I, Curto de Casas SI. Distribuição geográfica e dispersão alti-latitudinal de aluns gêneros e espécies da tribo Triatomini Jeannel, 1919 (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 1998; 93:33-7.
Carcavallo RU,. Climatic factors related to Chagas disease transmissión. Mem Inst Oswaldo Cruz 1999; 94 Suppl 1:367-9.
Rejmankova E, Roberts DR, Pawley A, Manguin S, Polanco J. Predictión of Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. Am J Trop Med Hyg 1995; 53:482-8.
Rogers DJ, Randolph SE, Snow RW, Hay SI,. Satellite imagery in the study and forecast of malaria. Nature 2002; 415:710-5.
Snow RW, Craig MH, Deichmann U, le Sueur D,. A preliminary continental risk map for malaria mortality among African children. Parasitol Today 1999; 15:99-104.
Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Rejmankova E, Ulloa A, et al. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmissión. Am J Trop Med Hyg 1994; 51:271-80.
Thomson MC, Connor SJ, D'Alessandro U, Rowlingson Z, Diggle P, Cresswell M, et al. Predicting malaria infection on Gambian children from satellite data and bed net use surveys: the importance of spacial correlation in the interpretation of the results. Am J Trop Med Hyg 1999; 61:2-8.
Rogers DJ, Randolph SE. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature 1991; 351:739-41.
Rogers DJ, Williams BG. Monitoring trypanosomiasis in space and time. Parasitology 1993;106 Suppl: S77-S92.
Brooker S, Hay SI, Bundy DA. Tools from ecology: useful for evaluating infection risk models? Trends Parasitol 2002; 18:70-4.
Kristensen TK, Malone JB, McCarroll JC. Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in Ethiopia. Acta Trop 2001; 79:73-8.
Elnaiem DA, Schorscher J, Bendall A, Obsomer V, Osman ME, Mekkawi AM, et al. Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan. Am J Trop Med Hyg 2003; 68:10-7.
Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, et al. Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 1998; 92:877-87.
Cross ER, Newcomb WW, Tucker CJ. Use of weather data and remote sensing to predict the geographic and seasonal distributión of Phlebotomus papatasi in southwest Asia. Am J Trop Med Hyg 1996; 54:530-6.
Thomson MC, Elnaiem DA, Ashford RW, Connor SJ. Towards a kala azar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables. Trop Med Int Health 1999; 4:105-13.
Kitron U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 1998; 35:435-45.
Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 2002; 8:289-97.
Brownstein JS, Holford R, Fish D. A climate-based model predicts the spatial distributión of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 2003; 111:1152-7.
Malone JB, Bergquist NR, Huh OK, Bavia ME, Bernardi M, El Bahy MM, et al. A global network for the control of snail-borne disease using satellite surveillance and geographic information systems. Acta Trop 2001; 79:7-12.
Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, et al. Ecological forecasts: an emerging imperative. Science 2001; 293:657-60.
Rushton G. Public health, GIS, and spatial analitic tools. Annu Rev Public Health 2003; 24:43-56.
Gorla DE. Variables ambientales registradas por sensores remotos como indicadores de la distribución geográfica de Triatoma infestans. Ecología Austral 2002; 12:117-27.
Peterson AT, Sanchez-Cordero V, Beard CB, Ramsey JM. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 2002; 8:662-7.
Costa J, Peterson AT, Beard CB. Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae). Am J Trop Med Hyg 2002; 67:516-20.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40 year reanalysis project.
Bargues MD, Marcellina A, Dujardin JP, Más-Coma S. Triatomine vector of Trypanosoma cruzi: a molecular perspective based on nuclear ribosomal DNA markers. Trans R Soc Trop Med Hyg 2002; 96 (Suppl 1):159-64.
Zeledón R. El Triatoma dimidiata (Latreille, 1811) y su relación con la enfermedad de Chagas. San José (Costa Rica): UNED, 1981.
Zeledon R, Montenegro VR, Zeledon O. Evidence of colonization of man-made ecotopes by Triatoma dimidiata (Latreille, 1811) in Costa Rica. Mem Inst Oswaldo Cruz 2001; 96:659-60.
Monroy C, Rodas A, Mejia M, Rosales R, Tabaru Y. Epidemiology of Chagas disease in Guatemala: infection rate of Triatoma dimidiata, Triatoma nitida and Rhodnius prolixus (Hemiptera, Reduviidae) with Trypanosoma cruzi and Trypanosoma rangeli (Kinetoplastida, Trypanosomatidae). Mem Inst Oswaldo Cruz 2003; 98:305-10.
Asin S, Catala S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 1995; 81:1-7.
Randolph SE. Ticks and tick-borne disease systems in space and from space. Adv Parasitol 2000; 47:217-45.
Estrada-Peña A. Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. J Med Entomol 2001; 38:361-70.
Cohen J, Gürtler RE. Modeling household transmission of american trypanosomiasis. Science 2001; 293:694-8.