2008, Number 2
<< Back Next >>
Rev Biomed 2008; 19 (2)
Pupal surveillance of Aedes aegypti as a tool for control of the vector in a municipality with low density of La Habana City, Cuba
Bisset J, Marquetti MC, García A, Vandelerberghe V, Leyva M, Van der SP, Rodríguez M, Infante E
Language: Spanish
References: 39
Page: 92-103
PDF size: 282.73 Kb.
ABSTRACT
Introduction. Aedes aegypti surveillance has largely relied upon larvae indices however this has been strongly criticized as they provide scanty information to determine dengue risk of transmission.
Objetives. To determine the most productive
Ae. aegypti pupae water containers, the emerging daily numbers of
Ae. aegypti adult females, as well as the mosquito spatial distribution in the area of study.
Material and Methods. A survey was carried out in the whole La Lisa municipality to collect the immature mosquito stages in different water containers. Daily numbers of emerging females was calculated, and temperature and rainfall data were also collected.
Results. A total of 527 water containers had figures of 1268
Ae. aegypti (986 larvae and 282 pupae) during the year of study. They were distributed in 53 different habitats, lower tanks or tins for water storage were the most productive for the pupae stages in the study. The highest adult female emerging rate occurred during July-August and the lowest between October-December. A significant positive relation was found for temperature, rainfall and the number of habitats but not for daily emerging females.
Conclusions. The study proposes to use pupae surveillance for the
Ae. aegypti control program in Cuba to focus on the most productive mosquito water containers.
REFERENCES
Gibbons RV & Vaughn DW. Dengue: an escalating problem. BMJ 2006; 324:1563-66.
Hales S, Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 2002; 60:830-34.
Marquetti MC. Aspectos bioecológicos de importancia para el control de Aedes aegypti y otros culícidos en el ecosistema urbano. Tesis para optar por el grado de Dr. En Ciencias de la Salud. 2006. [Disertación]. Instituto “Pedro Kourí” Ciudad de la Habana, Cuba.
Focks DA. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. Special Programme for Research and Training in Tropical Diseases (TDR), TDR/DE/Den/2003; 9. 38
Bisset J, Marquetti MC, Súarez S, Rodríguez M and H Padmanabha. Application of the pupal/demographic–survey methodology in an area of Havana, Cuba, with low densities of Aedes aegypti. Ann Trop Med Parasitol 2006; 100 (Suppl. 1):S45-S51.
Bisset J, Marquetti MC, Portillo R, Rodríguez M, Suárez S, Leyva M. Factores ecológicos asociados con la presencia de larvas de Aedes aegypti en zonas de alta infestación del municipio Playa, Ciudad de la Habana, Cuba. Rev Panam Salud 2006; 19(6):379-384.
Sanchez L, Vanlerberghe V, Alfonso L, Marquetti MC, Guzman MG, Bisset J, et al. Aedes aegypti larval indice and risk for dengue epidemic. Emerg Infec Dis 2006:12;800-6.
Midega JT, Nzovu J, Kahindi S, Sang RC, Mbogo C. Application of the pupal /demographic-survey methodology to identify the key container habitats of Aedes aegypti (L) in Malindi district, Kenya. Ann Trop Med Parasitol 2006: 100 (Suppl.1); S61-S72
Arredondo-Jimenez JL, Valdez-Delgado KM. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality. Ann Trop Med Parasitol 2006: 100 (Suppl.1); S17-S32
Barbazan P, Tuntaprasart W, Souris M, Demoraes F, Nitatpattana N, Boonyuan W, et al. Assessment of a new strategy, based on Aedes aegypti (L) pupal productivity, for the surveillance and control of dengue transmission in Thailand. Ann Trop Med Parasitol 2008:102;161-71
Burkot TR, Handzel T, Schmaedick MA, Tufa J, Roberts JM, Graves PM. Productivity of natural and artificial containers for Aedes polynesiensis and Aedes aegypti in four American Samoan villages. Med Vet Entomol 2007:21;22-29
Bisset J, Marquetti MC, Leyva M, Rodríguez M. Distribución y talla del adulto de Aedes aegypti asociado con los sitios de cría. Rev Cub Med Trop 2008;60:1
Romero-Vivas CME, Llinas H, Falconar AKI. Three calibration factors, applied to a rapid sweeping method, can accurately estimate Aedes aegypti (Diptera: Culicidae) pupal numbers in large water-storage containers at all temperatures at which dengue virus transmission occurs. J Med Entomol 2007; 44:930-37
Historia de La Lisa. www.sancristobal.cult.cu/sitios/mun/la lisa/Historia.htm
Armada G. A, Trigo J. Manual para supervisores responsables de brigada y visitadores. MINSAP, Cuba.1981. p. 18
Marquetti MC, Bisset J, Portillo R, Rodríguez M, Leyva M. Factores de riesgo de infestación pupal con Aedes aegypti dependientes de la comunidad en un municipio de Ciudad de la Habana, Cuba. Rev Cub Med Trop 2007;59:1
Focks DA, Sackett SR, Bailey DL, & Dame DA. Observations on container-breeding mosquitoes in New Orleans, Louisiana with an estimate of the population density of Aedes aegypti (L). Amer J Trop Med Hyg 1981;30:1329-35
Marquetti MC. Suárez S, Bisset J, Leyva M. Reporte de hábitats utilizados por Aedes aegypti en Ciudad de la Habana. Rev Cub Med Trop 2005; 57:2
Winch PJ, Barrientos-Sánchez G, Pingserver-Castro E, Manzano-Cabrera L, Lloyd L.S, Mendez Galvan, et al. Variation in Aedes aegypti larval indices over a one year period in a neighborhood of Mérida, Yucatán, México. J Am Mosq Control Assoc 1992; 8:193-95.
Timmermann, SE & Briegel H. Water depth and larval density affect development and accumulation of reserves in laboratory populations of mosquitoes. Bull Soc Vector Ecol. 1993; 18:174-87.
Arrivillaga J & Barrera R. Food as a limiting factor for Aedes aegypti in water-storage containers. J of Vector Ecol 2004; 29:11-20.
Tun-Lin W, Kay BH, Barnes A. Understanding productivity, a key to Aedes aegypti Surveillance. Am J Trop Med Hyg 1995; 53:595-601
Turner AY, Dávila de Obaldía G. Aedes aegypti breeding site characterization by pupal density and associated bacteria in Panamá. J Am Mosq Control Assoc. 1996; 12 (3).
Focks DA, Chadee D. Pupal survey: An epidemiologically significant surveillance. Method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 1997; 56:159-67.
Vezzani D, Schweigmann N. Suitability of containers from different sources as breeding sites of Aedes aegypti (L) in a cemetery of Buenos Aires City, Argentina. Mem Inst Oswaldo Cruz 2002; 97:789-92
Strickman D, Kittayapong P. Dengue and its vectors in Thailand: collected transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Am J Trop Med Hyg 2003; 68:209-17
Hayes J, García E, Flores R, Súarez G, Rodríguez T, Coto R, Baltrons R, et al. Risk factors for Infection during a severe dengue outbreak in El Salvador in 2000. Am J Trop Med Hyg 2003; 69:629-33.
Morrison A, Gray K, Getis A, Astete H, Sihuincha M, Focks D, et al. Temporal and geographic patterns of Aedes aegypti (Diptera:Culicidae) production in Iquitos, Peru. J Med Entomol 2005; 42(2)
TDR. Multicountry study of Aedes aegypti pupal productivity survey methodology. Findings and Recommendations. TDR/IRM/DEN/06.1
Mazine CA, Yasumaro S, Macoris ML, Andrighetti MT, Dacosta VP, Wich PJ. Newsletters as a channel for communication in a community-based Aedes aegypti Control Program in Marilia, Brazil. J Am Mosq Control Assoc 1996; 12:732-35
Favier C, Degallier N, Ribeiro Vilarinhos P, Laurentino de Carvalho MS, Cavalcanti MA, Britto M. Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasilia (DF, Brazil). Tropical Medicine and International Health 2006; 11:1104-18
Hoop M, Foley J. Global scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change 2001; 48:441-63
López-Vélez R, Molina R. Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. Rev Esp Salud Pública 2005;79(2)
Center for Disease Control. Biología y control del Aedes aegypti. Atlanta, Georgia:U.S. Department of Health and Human Services, Public Health Service, 1980. Vector Topics No. 4
Rueda LM, Patel KJ, Axtell RC. Efficacy of encapsulated Lagenidium giganteum (Oomyetes: Lagenidiales) against Culex quinquefasciatus and Aedes aegypti larvae in artificial containers. J Am Mosq Control Assoc 1990; 6:694-99.
Watts DM, Burke BA, Harrison RW, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue-2 virus. Am J Trop Med Hyg 1987; 23:1153-1160.
Focks DA, Brenner J, Hayes J, Daniels E. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 2000; 62:11-18
Kittayapong P, Strickman D. Distribution of container-inhabiting Aedes larvae (Diptera:Culicidae) at a dengue focus in Thailand. Journal of Medical Entomology 1993:30; 3:601-06.
Portillo R. Factores ecológicos asociados a la infestación pupal de Aedes aegypti en 4 áreas de salud del municipio Playa, Cuba Tesis de Maestría. IPK, Cuba. 2005.