2009, Number 1
<< Back Next >>
Bioquimia 2009; 34 (1)
Hemoglobin-membrane interaction evaluation during hemoglobin S polymerization process
Falcón-Dieguez JE, Rodi P, Lores-Guevara MA, Gennaro AM
Language: Spanish
References: 24
Page: 13-20
PDF size: 155.34 Kb.
ABSTRACT
An enhanced hemoglobin-membrane association has been previously documented in the sickle cell disease. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins were labelled with the 4-maleimido Tempo spin label, and that were subsequently resealed with haemoglobin S or A. We studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin), with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behavior of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the hemoglobin S polymerization process under spontaneous deoxygenation.
REFERENCES
Eaton WA, Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990; 40: 63-279.
Li X, Briehl RW, Bookchin RM, Josephs R, Wei B, Manning JM, et al. Sickle hemoglobin polymer stability probed by triple and quadruple mutant hybrids. J Biol Chem. 2002; 277: 13479-87.
Lores M, Cabal C. Proton magnetic relaxation process during the polymerization of hemoglobin S. Appl Magn Reson. 2005; 28: 79-84.
Lores M, Cabal C, Gennaro AM. EPR study of the hemoglobin rotation correlation time and microviscosity during the polymerization of hemoglobin S. Appl Magn Reson. 2006; 30: 121-8.
Fernández A, Cabal C, Losada J, Álvarez E, Soler C, Otero J. In vivo action of vanillin on delay time determinated by magnetic relaxation. Hemoglobin. 2005; 29: 181-7.
Cabrales Y, Lores M, Machado Y. Deuterium magnetic relaxation process during the polymerization of hemoglobin S. Appl Magn Reson. 2008; 33: 207-12.
Falcón JE, Del Toro G, Alonso Y. Evaluación de la actividad antipolimerizante de 4 aldehídos aromáticos en hemoglobina S usando relajación magnética protónica. Bioquimia. 2006; 31: 132-9.
Shaklai N, Sharma VS, Ranney HM. Interaction of sickle cell hemoglobin with erythrocyte membranes. Proc Natl Acad Sci USA. 198; 78: 65-8.
Platt OS, Falcone JF. Membrane protein interactions in sickle red blood cells: evidence of abnormal protein 3 function. Blood. 1995; 86: 1992-8.
Liu SC, Yi SJ, Mehta JR, Nichols PE, Ballas SK, Yacono PW, et al. Red cell membrane remodelling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies. J Clin Invest. 1996; 97: 29-36.
Aprelev A, Rotter MA, Etzion Z, Bookchin RM, Briehl RW, Ferrone FA. The effects of erythrocyte membranes on the nucleation of sickle hemoglobin. Biophys J. 2005; 88: 2815-22.
Fung LW, Litvin SD, Reid TM. Spin-label detection of sickle hemoglobin-membrane interaction at physiological pH. Biochemistry. 1983; 22: 864-9.
Chen Q, Balazs TC, Nagel RL, Hirsch RE. Human and mouse hemoglobin association with the transgenic mouse erythrocyte membrane. FEBS Lett. 2006; 580: 4485-90.
Lores MA. Estudio de los procesos de interacción magnética y la movilidad molecular durante la polimerización de la HbS con métodos de resonancia magnética. Tesis Doctoral. Universidad de Oriente. Santiago de Cuba. 2006.
Steck TL, Kant JA. Preparation of impermeable ghost and inside-out vesicles from humam erythrocyte membranes. Methods Enzymol. 1974; 31: 172-80.
Clark MR, Shohet SB. Hybrid erythrocytes for membrane studies in sickle cell disease. Blood. 1976; 47: 121-31.
Fung LW. Spin-label studies of the lipid and protein components of erythrocyte membranes. A comparison of electron paramagnetic resonance and saturation transfer electron paramagnetic resonance methods. Biophys J. 1981; 33: 253-62.
Fung LW. Spin-label detection of hemoglobin-membrane interaction at physiological pH. Biochemistry. 1981; 20: 7162-6.
Fung LW, Ostrowski MS. Spin label electron paramagnetic resonance (EPR) studies of Huntington disease erythrocyte membranes. Am J Hum Genet. 1982; 34: 469-80.
Cabrales Y. Relajación en muestras de solución de hemo-globina y glóbulos rojos. Rev Cubana Quím. 2006; 18: 305-6.
Noguchi CT, Torchia DA, Schechter AN. Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. Proc Natl Acad Sci USA. 1980; 77: 5487-91.
Lores M, Cabal C, Rangel O. Evidencias experimentales de la desoxigenación espontánea de la hemoglobina S, obtenidas empleando resonancia paramagnética electrónica. Rev Cubana Quím. 2006; 18: 3-7.
Eisinger J, Flores J, Bookchin RM. The cytosol-membrane interface of normal and sickle erythrocytes: effect of hemoglobin deoxygenation and sickling. J Biol Chem. 1984; 259: 7169-77.
Goodman SR. The irreversibly sickled cell: a perspective. Cell Mol Biol (Noisy-le-grand). 2004; 50: 53-8.