2009, Number 2
<< Back Next >>
Rev Mex Oftalmol 2009; 83 (2)
Aberraciones de alto orden en ojos con queratocono, medidas mediante análisis de frente de onda Hartmann–Shack
Torres-Soriano KE, Ruiz-Quintero NC, Naranjo-Tackman R
Language: Spanish
References: 30
Page: 100-105
PDF size: 96.64 Kb.
ABSTRACT
Objective: To describe the higher-order aberrations in eyes with keratoconus measured with wavefront Hartmann-Schack.
Material and methods: Prospective, descriptive and cross-sectional study. We studied 55 cases in 38 patients. It was made in each patient: Visual acuity, refraction, corneal topography (Orbscan II) and aberrometry (Ladarwave).
Results: The age average of the patients was 28.95±8.62 years; 21 eyes (38.18%) presented keratoconus stage I, 22 eyes (40%) stage II, 10 (18, 18%) stage III and 2 eyes (3, 64%) stage IV. More important the ocular aberrations of high order, according to polynomials of Zernique, for a pupil of 6.50 mm were: the vertical coma (-1.21 microns ± 1.16) and the spherical aberration (- 0.46 microns ± 0.6). The vertical coma was 2.7 times greater than the spherical aberration. According to the degree of keratoconus we found: vertical coma [3,1]: -0.73±0.82; -1.38±1.28; -1.84±1.30; -1.35±1.10 microns and spherical aberration [4,0]: -0.13±0.42; -0.58±0.48; -0.96±1.00; -0.13±0.19 microns for keratoconus I, II, III and IV respectively. The spherical aberration display statistically significant difference (p‹ 0.05) between different the degrees from keratoconus
Conclusions: Vertical coma is the dominant higher-order aberrations in people with keratoconus, and the spherical aberration is a significant parameter to distinguish the different degrees from keratoconus.
REFERENCES
Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1984; 28:293–322.
Bron AJ. Keratoconus. Cornea 1988; 7:163-169.
Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42:297-319.
Maguire LJ, Bourne WM. Corneal topography of early keratoconus. Am J Ophthalmol 1989; 108:107-112.
Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg 1989; 5:400-408.
Wilson SE, Lin DT, Klyce SD. Corneal topography of keratoconus. Cornea1991; 10:2-8.
Liang J. A new method to precisely measure the wave aberrations of the eye with a Hartmann-Shack-wave front sensor [dissertation]. Heidelberg Germany: University of Heidelberg, 1991.
Liang J, Grimm B Goelz, Bille JF. Objective measurement of wave aberration of the human eye with the using of a Hartmann- Shack wave front sensor. J Opt Soc Am A Opt Image Sci Vis 1994; 11:1949-57.
Porter J, Guirao A, Cox IG, Williams DR. Monochromatic aberrations of the human eye in a large poblation. J Opt Soc Am A Opt Image Sci Vis 2001; 18:1793-803.
Amano S, Amano Y, Yamagami S y cols. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol 2004; 137:988-992.
Cheng H, Barnett JK, Vilupuru AS y cols. A population study on changes in wave aberrations with accommodation. J Vision 2004; 4(4):272-280.
Brunette I, Bueno JM, Parent M y cols. Monochromatic aberrations as a function of age, from childhood to advanced age. Invest Ophthalmol Vis Sci 2003; 44:5438-5446.
Wang L, Koch DD. Ocular higher-order aberrations in individuals screened for refractive surgery. J Cataract Refract Surg 2003; 29:1896-1903.
Thibos LN, Bradley A, Hong X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physiol Opt 2002; 22:427-433.
Thibos L, Hong X, Bradley A, Cheng X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J Opt Soc Am A Opt Image Sci Vis 2002;19:2329-2348.
Castejon-Mochon JF, López Gil N, Benito A, Artal P. Ocular wave-front aberration statistics in a normal young population. Vision Res 2002; 42:1611-1617.
Maeda N, Fujikado T, Kuroda T y cols. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 2002; 109:1996-2003.
Pantanelli S, MacRae S, Jeong TM, Yoon G. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor. Ophthalmology 2007; 114:2013-2021.
Kosaki R, Maeda N, Bessho K y cols. Magnitude and orientation of Zernike terms in patients with keratoconus. Invest Ophthalmol Vis Sci 2007; 48:3062-3068.
Campbell CE. A new method for describing the aberrations of the eye using Zernike polynomials. Optom Vis Sci 2003; 80:79-83.
Oie Y, Maeda N, Kosaki R y cols. Characteristics of ocular higher- order aberrations in patients with pellucid marginal corneal degeneration. J Cataract Refract Surg. Optom Vis Sci 1996.
Schwiegerling J, Greivenkamp JE. Keratoconus detection based on videokeratoscopic height data. Optom Vis Sci 1996; 73:721-728.
Schwiegerling J. Cone dimensions in keratoconus using Zernike polynomials. Optom Vis Sci 1997; 74:963-969.
Langenbucher A, Gusek-Schneider GC, Kus MM, Seitz B. Topographiegestützte Berechnung der Keratokonus-Dimensionen. Klin Monatsbl Augenheilkd 1999; 214:372-377.
Langenbucher A, Gusek-Schneider GC, Kus MM y cols. Keratokonus- Screening mit Wellenfrontparametern auf der Basis topographischer Höhendaten. Klin Monatsbl Augenheilkd 1999; 214:217-223.
Gobbe M, Guillon M. Corneal wavefront aberration measurements to detect keratoconus patients. Cont Lens Anterior Eye 2005; 28:57-66.
Twa MD, Parthasarathy S, Roberts C y cols. Automated decision tree classification of corneal shape. Optom Vis Sci 2005; 82:1038-1046.
Bühren J, Kühne C, Kohnen T. Wellenfrontanalyse zur Diagnose des subklinischen Keratokonus. Ophthalmologe 2006; 103:783-790.
Batool J, Xiaohui Li, Huiying Y y cols. Higher Order Wavefront Aberrations and Topography in Early and Suspected Keratoconus. Refract Surg 2007; 23:774-781.
Alió J, Shabayek M. Corneal Higher Order Aberrations: A Method to Grade Keratoconus. J Refract Surg 2006; 22:539- 545.