2009, Number S1
<< Back Next >>
Ann Hepatol 2009; 8 (S1)
New insights into the pathophysiology of nonalcoholic fatty liver disease
Chávez-Tapia NC, Uribe M, Ponciano-Rodríguez G, Medina-Santillán R, Méndez-Sánchez N
Language: English
References: 58
Page: 9-17
PDF size: 124.57 Kb.
Text Extraction
The consequences of pathologic adipose tissue accumulation have been described for almost all organs. Nonalcoholic fatty liver disease (NAFLD) is considered the most relevant hepatic manifestation of obesity. There is great interest in the study of NAFLD, and new insights into its pathogenic process have been described. Currently, in addition to insulin resistance, which was considered the hallmark of this disease, endocrine, immunologic, and central nervous system factors are attracting interest as explanatory variables. In this review, new factors associated with the main theories on the pathophysiology of NAFLD are analyzed.
REFERENCES
Méndez-Sánchez N, Chávez-Tapia NC, Zamora-Valdés D, Medina-Santillán R, Uribe M. Hepatobiliary diseases and insulin resistance. Curr Med Chem 2007; 14: 1988-1999.
Abdelmalek MF, Diehl AM. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin North Am 2007; 91: 1125-1149, ix.
Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2006; 91: 4753-4761.
Crouch E, Persson A, Chang D, Heuser J. Molecular structure of pulmonary surfactant protein D (SP-D). J Biol Chem 1994; 269: 17311-17319.
McCormack FX, Pattanajitvilai S, Stewart J, Possmayer F, Inchley K, Voelker DR. The Cys6 intermolecular disulfide bond and the collagen-like region of rat SP-A play critical roles in interactions with alveolar type II cells and surfactant lipids. J Biol Chem 1997; 272: 27971-27979.
Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci USA 2004; 101: 10302-10307.
Shapiro L, Scherer PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol 1998; 8: 335-338.
Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000; 96: 1723-1732.
Guerre-Millo M. Adiponectin: an update. Diabetes Metab 2008; 34: 12-18.
Méndez-Sánchez N, Chávez-Tapia NC, Zamora-Valdés D, Uribe M. Adiponectin, structure, function and pathophysiological implications in non-alcoholic fatty liver disease. Mini Rev Med Chem 2006; 6: 651-656.
Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003; 278: 9073-9085.
Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 2006; 29: 1357-1362.
Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J Clin Endocrinol Metab 2007; 92: 4313-4318.
Passoja K, Rautavuoma K, Ala-Kokko L, Kosonen T, Kivirikko KI. Cloning and characterization of a third human lysyl hydroxylase isoform. Proc Natl Acad Sci USA 1998; 95: 10482-10486.
Wang Y, Lam KS, Chan L, Chan KW, Lam JB, Lam MC, Hoo RC, et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem 2006; 281: 16391-16400.
Méndez-Sánchez N, Bermejo-Martínez LB, Vinals Y, Chávez-Tapia NC, Vander Graff I, Ponciano-Rodríguez G, Ramos MH, et al. Serum leptin levels and insulin resistance are associated with gallstone disease in overweight subjects. World J Gastroenterol 2005; 11: 6182-6187.
Méndez-Sánchez N, Ponciano-Rodríguez G, Chávez-Tapia NC, Uribe M. Leptine participation in the development of liver steatosis and biliar lithiasis. Gac Med Mex 2005; 141: 495-499.
Uno K, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Imai J, Hasegawa Y, et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 2006; 312: 1656-1659.
Lam HB, Yeh CH, Cheng KC, Hsu CT, Cheng JT. Effect of cholinergic denervation on hepatic fibrosis induced by carbon tetrachloride in rats. Neurosci Lett 2008; 438: 90-95.
Bernal-Mizrachi C, Xiaozhong L, Yin L, Knutsen RH, Howard MJ, Arends JJ, Desantis P, et al. An afferent vagal nerve pathway links hepatic PPARalpha activation to glucocorticoid-induced insulin resistance and hypertension. Cell Metab 2007; 5: 91-102.
Warne JP, Foster MT, Horneman HF, Pecoraro NC, de Jong HK, Ginsberg AB, Akana SF, et al. The gastroduodenal branch of the common hepatic vagus regulates voluntary lard intake, fat deposition, and plasma metabolites in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2008; 294: E190-200.
Sparks JD, Sparks CE. Overindulgence and metabolic syndrome: is FoxO1 a missing link? J Clin Invest 2008; 118: 2012-2015.
Valenti L, Rametta R, Dongiovanni P, Maggioni M, Fracanzani AL, Zappa M, Lattuada E, et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 2008; 57: 1355-1362.
Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J 2008; 55: 617-624.
Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 2005; 353: 604-615.
Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366: 377-391.
Denechaud PD, Dentin R, Girard J, Postic C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2008; 582: 68-73.
Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, et al. The nuclear receptor LXR is a glucose sensor. Nature 2007; 445: 219-223.
Denechaud PD, Bossard P, Lobaccaro JM, Millatt L, Staels B, Girard J, Postic C. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 2008; 118: 956-964.
Coletta DK, Balas B, Chávez AO, Baig M, Abdul-Ghani M, Kashyap SR, Folli F, et al. Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol Endocrinol Metab 2008; 294: E910-917.
Iizuka K, Horikawa Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 2008; 374: 95-100.
Wang L, Huang J, Saha P, Kulkarni RN, Hu M, Kim Y, Park K, et al. Orphan receptor small heterodimer partner is an important mediator of glucose homeostasis. Mol Endocrinol 2006; 20: 2671-2681.
Hartman HB, Lai K, Evans MJ. Loss of small heterodimer partner (SHP) expression in the liver protects against dyslipidemia. J Lipid Res 2008.
Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134: 556-567.
Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294: 1866-1870.
Yamazaki Y, Kakizaki S, Horiguchi N, Sohara N, Sato K, Takagi H, Mori M, et al. The role of the nuclear receptor constitutive androstane receptor in the pathogenesis of non-alcoholic steatohepatitis. Gut 2007; 56: 565-574.
de Wit NJ, Bosch-Vermeulen H, de Groot PJ, Hooiveld GJ, Bromhaar MM, Jansen J, Muller M, et al. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genomics 2008; 1: 14.
Stepkowski SM, Chen W, Ross JA, Nagy ZS, Kirken RA. STAT3: an important regulator of multiple cytokine functions. Transplantation 2008; 85: 1372-1377.
Méndez-Sánchez N, Chávez-Tapia NC, Medina-Santillán R, Villa AR, Sánchez-Lara K, Ponciano-Rodríguez G, Ramos MH, et al. The efficacy of adipokines and indices of metabolic syndrome as predictors of severe obesity-related hepatic steatosis. Dig Dis Sci 2006; 51: 1716-1722.
Canbakan B, Tahan V, Balci H, Hatemi I, Erer B, Ozbay G, Sut N, et al. Leptin in nonalcoholic fatty liver disease. Ann Hepatol 2008; 7: 249-254.
Roglans N, Vila L, Farre M, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC. Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 2007; 45: 778-788.
Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003; 421: 856-859.
Hong F, Radaeva S, Pan HN, Tian Z, Veech R, Gao B. Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver disease. Hepatology 2004; 40: 933-941.
Torbenson M, Yang SQ, Liu HZ, Huang J, Gage W, Diehl AM. STAT-3 overexpression and p21 upregulation accompany impaired regeneration of fatty livers. Am J Pathol 2002; 161: 155-161.
Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-Induced Leptin Resistance Exacerbates Weight Gain in Response to Subsequent High Fat Feeding. Am J Physiol Regul Integr Comp Physiol 2008.
Sookoian S, Castano G, Gianotti TF, Gemma C, Rosselli MS, Pirola CJ. Genetic variants in STAT3 are associated with nonalcoholic fatty liver disease. Cytokine 2008; 44: 201-206.
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47: 571-579.
Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, Kitamura N, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55: 415-424.
Malaguarnera L, Rosa MD, Zambito AM, dell’Ombra N, Marco RD, Malaguarnera M. Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am J Gastroenterol 2006; 101: 2060-2069.
Raffaella C, Francesca B, Italia F, Marina P, Giovanna L, Susanna I. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obesity (Silver Spring) 2008; 16: 958-964.
Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008; 57: 1071-1077.
Romestaing C, Piquet MA, Letexier D, Rey B, Mourier A, Servais S, Belouze M, et al. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. Am J Physiol Endocrinol Metab 2008; 294: E110-119.
Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, Sastre J, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 2008; 57: 957-965.
Ramalho RM, Cortez-Pinto H, Castro RE, Sola S, Costa A, Moura MC, Camilo ME, et al. Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. Eur J Gastroenterol Hepatol 2006; 18: 21-29.
Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 2006; 44: 27-33.
Tarantino G, Conca P, Coppola A, Vecchione R, Di Minno G. Serum concentrations of the tissue polypeptide specific antigen in patients suffering from non-alcoholic steatohepatitis. Eur J Clin Invest 2007; 37: 48-53.
Wei Y, Wang D, Pagliassotti MJ. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem 2007; 303: 105-113.
Zou C, Ma J, Wang X, Guo L, Zhu Z, Stoops J, Eaker AE, et al. Lack of Fas antagonism by Met in human fatty liver disease. Nat Med 2007; 13: 1078-1085.