2008, Number 3
Next >>
Vet Mex 2008; 39 (3)
Direct and maternal genetic variance components for growth traits in red deer (Cervus elaphus scoticus)
Delgadillo CAC, López OR, Montaldo HH, Berruecos VJM, Luna AA, Vásquez PCG
Language: English/Spanish
References: 26
Page: 237-245
PDF size: 209.22 Kb.
ABSTRACT
The objective of this study was to estimate the direct and maternal genetic variance components for some growth traits in a red deer herd
(Cervus elaphus scoticus) located in Queretaro, Mexico. Information between 1994 and 2003, consisting of 417 records of birth weight (BW), 169 weaning weight (WW), 168 six months weight (6MW) and 172 yearly weight (YW) was analyzed, which included the identifi cation of 554 animals with 11 stags and 107 hinds. The fi xed effects considered were: sex, year of birth and pregnancy number (P ‹ 0.001). Three mixed models were used. Model 1 included the fi xed effects and the direct additive genetic effect; Model 2 included those in 1 plus the maternal additive genetic effect; and Model 3 included those in 2 plus the permanent maternal environment effect. All of them used the residual maximum likelihood method (REML), implemented in the ASReml program. The best model to obtain variance components and genetic parameters was the second model, direct heritability (h
2d ±s. e.) 0.11 ± 0.09 and 0.19 ± 0.18 and maternal (h
2
m ± s. e.) 0.15 ± 0.06 and 0.14 ± 0.11 for BW and WW, respectively. The directmaternal genetic orrelations were –0.21 ± 0.29, –0.92 ± 0.11 and –0.84 ± 0.20 for BW, WW and 6MW, respectively.
REFERENCES
1.Van den Berg GHJ, Garrick DJ. Inheritance of adult velvet anther weights and live weights in farmed red deer. Livest Prod Sci 1997; 49: 287-295.
2.Meyer K. Estimates of direct and maternal correlations among growth traits in Australian beef cattle. Livest Prod Sci 1994; 38: 91-105.
3.Clément V, Bibé B, Verrier E, Elsen JM, Manfredi E, Bouix J et al. Simulation analysis to test the infl uence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genet Sel Evol 2001; 33: 369-395.
4.Meyer K. Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livest Prod Sci 1992; 31: 179-204.
5.Tawah CL, Mbah DA, Rege JEO, Oumate H. Genetic evaluation of birth and weaning of Gudali and twobreed synthetic Wakwa beef cattle populations under selection in Cameroon: genetic and phenotypic parameters.Anim Prod 1993; 57: 73-79.
6.Al-Shorepy SA, Notter DR. Genetic variation and covariation for ewe reproduction, lamb growth and lamb scrotal circumference in a Fall-Lambing sheep fl ock. J Anim Sci 1996; 74: 1490-1498.
7.Robinson DL. Estimation and interpretation of direct and maternal genetic parameters for weights of Australian Angus Cattle. Livest Prod Sci 1996; 45: 1-11.
8.Lee C, Van Tassell CP, Pollak EJ. Estimation of Genetic variance and covariance components for weaning weight in Simmental cattle. J Anim Sci 1997; 75: 325-330.
9.Tosh JJ, Kemp RA, Ward DR. Estimates of direct and maternal genetic parameters for weight traits backfat thickness in a multibreed population of beef cattle. Can. J Anim Sci 1999: 79; 433-439.
10.Hanford KJ, Van Vleck LD, Snowder GD. Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Columbia Sheep. J Anim Sci 2002; 80: 3086-3098.
11.Matika O, Van Wyk JB, Erasmus GJ, Baker RL. Genetic parameters estimates in Sabi Sheep. Livest Prod Sci 2003; 79: 17-28.
12.Hofer A. Variance component estimation in animal breeding: a review. J Anim Breed Genet 1998; 115: 247-265.
13.Notter DR. Genetic parameters for growth traits in Suffolk and Poypay sheep. Livest Prod Sci 1998; 55:205-213.
14.Domínguez VJ, Núñez DR, Ramírez VR, Ruiz FA. Evaluación genética de variables de crecimiento en bovinos Tropicarne: I. selección de modelos. Agrociencia 2003; 37: 323-335.
15.Vasquez CG, Olvera L, Sequeiros Y, Kuri ML, Navarro VA, Rovelo AE et al. Nursing and feeding behavior of confi ned red deer (Cervus elaphus scoticus) in the Mexican highlands. NZ J Agric Res 2004; 47: 1-9.
16.García E. Modifi cación al sistema de clasificación climática de Köpen. México DF: UNAM Instituto de Geografi a, 1988.
17.INEGI. Cartas topográfi cas de climas de temperatu-ras y precipitación. México DF: Instituto Nacional de Estadística, Geografía e Informática, 2000.SAS.
18.SAS/STAT Users Guide versión 8. Cary, NC, USA:SAS Institute, 2001.
19.Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml User Guide Release 1.0. VSN International Ltd. 2002.
20.Van Vleck LD, Pollak EJ, Oltenacu BEA. Genetics for the animal sciences. New York: Ed. Freeman. 1987
21.McManus CM, Hamilton WJ. Estimation of genetic and phenotypic parameters for growth and reproductive traits for red deer on an unplaned farm. Anim Prod 1991; 53: 227-235.
22.McManus CM. Within-farm estimates of genetic and phenotypic parameters for growth and reproductive traits for red deer. Anim Prod 1993; 57: 153-159.
23.Rapley CM. Genetic parameters of live weight traits of red deer in New Zealand. Proceedings of the Australian Association for Animal Breeding and Genetics; 1990, 8; Hamilton (New Zealand). Hamilton (New Zealand): Australian Association for Animal Breeding and Genetics,1990: 501-507.
24.Fadili ME, Michaux C, Detilleux J, Leroy PL. Genetic parameters for growth traits of the Moroccan Timahdit breed of sheep. Small Rumin Res 2000; 37: 203-208.
25.Maniatis N, Pollott GE. The impact of data structure on genetic (co)variance components of early growth in sheep, estimated using an animal model with maternal effects. J Anim Sci 2003; 81: 101-108.
26.Neser FWC, Erasmus GJ, Wyk van JB. Genetic parameter estimates for pre-weaning weight traits in Dorper sheep. Small Rumin Res 2001; 40: 197-202.