2006, Number 2
<< Back Next >>
Rev Invest Clin 2006; 58 (2)
Cystic fibrosis: molecular update and clinical implications
Orozco L, Chávez M, Saldaña Y, Velázquez R, Carnevale A, González-del Ángel A, Jiménez S
Language: Spanish
References: 96
Page: 139-152
PDF size: 199.71 Kb.
ABSTRACT
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by chronic pneumopathy, pancreatic insufficiency, elevated sweat chloride levels and male infertility. It is caused by defects in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as a chloride channel. The identification of the CF-causing gene was a landmark in molecular medicine. Currently, over 1,300 disease-causing mutations have been reported to the Cystic fibrosis genetic analysis consortium. ΔF508 mutation is the most common CF allele, however a high heterogeneity of the CFTR mutations spectrum has been observed in populations, particularly in southern Europe and Latin America. Depending on the effect at the protein level, CFTR mutations can be divided in at least 5 classes. These mutations could cause totally (classes I-III) or partially (classes IV and V) loss of the protein function. The molecular defects resulting from different mutations in CFTR partially explain the clinical heterogeneity of the disease, suggesting the existence of modifier genes that are involved in modulating the phenotype and severity of the CF. In this review, we discuss the fundamental aspects and the recent progress that could give to the lector, the knowledge to understand the CFTR gene structure, the function of the CFTR protein, how CF mutations disrupt it, its phenotype consequences and finally, the strategies to design new therapies for the disease.
REFERENCES
Welsh MJ, Ramsey BW, Accuso F, Cutting GR. Cystic fibrosis. In: The metabolic and molecular bases of inherited disease, ed. C Scriver, A Beaudet, W Sly, D Valle, 8° Ed. New York: McGraw-Hill Co.; 2001, pp. 5121-88.
Lezana JL, Masa D, Lezana MA. Fibrosis quística en México. Análisis de sus principales aspectos epidemiológicos. Bol Med Hosp Infant Mex 1994; 5: 305-10.
Davis PB. Cystic Fibrosis. Pediatr Rev 2001; 2: 257-64.
Munger B, Brusilow S, Cooke R. An electron microscopic study of eccrine sweat glands in patients with cystic fibrosis of the pancreas. J Pediatr 1961; 59: 497-11.
Tomashefski JF Jr, Bruce M, Stern RC, Dearborn DG, Dahms B. The pathology of pulmonary air cysts in cystic fibrosis. Relation to radiologic findings and history of pneumothorax. Hum Pathol 1985; 16: 253-61.
Staab D. Cystic fibrosis: Therapeutic challenge in cystic fibrosis children. Eur J Endocrinol 2004; 151: 577-80.
Mischler EH, Chesney PJ, Chesney RW, Mazes RB. Demineralization in cystic fibrosis. Am J Dis Child 1979; 133: 632-5.
Conwal SP. Vitamin K in cystic fibrosis. J R Soc Med 2004; 97: 48-51.
Anderson D. Cystic fibrosis of the pancreas and its relationship to celiac disease: Clinical and pathologic study. Am J Dis Child 1938; 56: 344-99.
Stern RC, Stevens DP, Boat TF, Doershuk CF, Izant RF, Matthews LW. Symptomatic hepatic disease in cystic fibrosis: incidence, course, and outcome of portal systemic shunting. Gastroenterology 1976; 70: 645-9.
Oliveira MC, Reis FJ, Monteiro AP, Penna FJ. Effect of meconium ileus on the clinical prognosis of patients with cystic fibrosis. Braz J Med Biol Res 2002; 35: 31-8.
Jarzabet K, Zbucka M, Pepinski W, Szamatowicz J, Domitrz J, Janica J, Wotezynski S, Szamatowicz M. Cystic fibrosis as a cause of infertility. Reprod Biol 2004; 2: 119-29.
Orozco L, Alcántara MA, González A. Diagnóstico molecular de las enfermedades hereditarias. La frontera: Genética molecular de la enfermedad. Ed JP Luna, E. Orozco; México: Instituto Politécnico Nacional 2004; 2: 46-74.
Tsui L, Buchwald M, Barker D, Braman JC, Knowlton R, Schumm JW, et al. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 1985; 29: 1054-7.
Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059-65.
Riordan JR, Alon N, Grzelczak Z, Dubel S, Sun S. The CF gene product as a member of a membrane transporter (TM6-NBF) superfamily. Adv Exp Med Biol 1991; 290: 19-29.
Zielenski J, Rozmahel R, Bozon D, Kerem B, Grzelczak Z. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 1991; 10: 214-28.
Kerem BS, Rommens J, Buchanan J, Durie P, Corey ML, Levison H, et al. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989; 245: 1074-80.
Chou JL, Rozmahel R, Tsui LC. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem 1991; 266: 24271-476.
Yoshimura K, Nakamura H, Trapnell BC, Chu Cs, Daleman W, Pavirani A. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed a low levels in cell of epithelial origin. J Biol Chem 1991; 226: 9140-4.
White NL, Higgins CF, Trezise AEO. Tissue-specific in vivo transcription start site of the human and murine cystic fibrosis genes. Hum Mol Genet 1998; 7: 363-9.
Zielenski J, Tsui LC. Cystic fibrosis: Genotypic and phenotypic variations. Annu Rev Genet 1995; 29: 777-807.
Teng H, Jorissen M, Poppel H, Legius E, Cassiman JJ, Cuppens H. Increased proportion of exon 9 alternatively spliced CFTR transcripts in vas deferents compared with nasal epithelial cells. Hum Mol Genet 1997; 6: 85-90.
Chillon M, Casals T, Mercier B, Bassas L, Lissens W. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferents. N Engl J Med 1995; 332: 1475-80.
Riordan JR. Assembly of functional CFTR chloride channels. Annu Rev Physiol 2005; 67: 701-18.
Akabas MH. Cystic fibrosis transmembrane conductance regulator. Structural and function of an epithelial chloride channel. J Biol Chem 2000; 275: 3729-32.
Choy JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallen S. Aberrant CFTR- dependent HCO3-transport in mutation associated with cystic fibrosis. Nature 2001; 410: 94-7.
Vankeerberghen A, Cuppens H, Cassiman JJ. The cystic fibrosis transmembrane conductance regulator: and intriguing protein with pleiotropic functions. J Cyst Fibros 2002; 1: 13-29.
Cystic Fibrosis Genetic Analysis Consortium. http//www.genet.sickkids.on.ca
Rowntree R, Harris A. DNA polymorphisms in potential regulatory elements of the CFTR gene alter transcription factor binding. Hum Genet 2002; 111: 66-74.
Tzetis M, Efthymiadou A, Doudounakis S, Kanavakis E. Qualitative and quantitative analysis of mRNA associated with four putative splicing mutations (621+3A→G, 2751+2T→A,296+1G→C, 1717-9T→ C-D565G) and one nonsense mutation (E822X) in the CFTR gene. Hum Genet 2001; 109: 592-601.
Cartegni L, Chew SL, Kriner AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285-98.
Bobadilla JL, Macek M, Fine JP, Farrell PM. Cystic fibrosis: A world wide analysis of the CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 2002; 19: 575-606.
Orozco L, González L, Chávez M, Velázquez R, Lezana JL, Saldaña Y, et al. XV-2c/KM-19 haplotype analysis of cystic fibrosis mutations in Mexican patients. Am J Med Genet 2001; 102: 277-81.
Grebe TA, Doane WW, Richter SF, Clericuzio C, Norman RA, Seltzer WK, et al. Mutation analysis of the cystic fibrosis transmembrane regulator gene in Native American populations of the southwest. Am J Hum Genet 1992; 51: 736-40.
Arzimanoglou II, Tuchman A, Li Z, Gilbert F, Denning C, Valverde K, et al. Cystic fibrosis carrier screening in Hispanics. Am J Hum Genet 1995; 56: 544-7.
Villalobos C, Rojas A, Villarreal E, Cantú JM, Sanchez FJ, Saiki RK, et al. Analysis of 16 cystic fibrosis mutations in Mexican patients. Am J Med Genet 1997; 69: 380-2.
Flores S, Gallegos M, Moran M, Sánchez J. Detection of ΔF508 mutation in cystic fibrosis patients from northwestern Mexico. Ann Genet 1997; 40: 189-91.
Orozco L, Velázquez R, Zielenski J, Tsui LC, Chávez M, Lezana JL, et al. Spectrum of CFTR mutations in Mexican cystic fibrosis patients: identification of five novel mutations (W1098C, 846delT, P750L, 4160insGGGG and 297-1G A). Hum Genet 2000; 106: 360-5.
Lisker R, Pérez-Briceño R, Granados J. Gene frequencies and admixture estimates in a Mexico City population. Am J Phys Anthropol 1986; 71: 203-7.
Lisker R, Ramírez E, Pérez-Briceño R, Granados J, Babinsky V. Gene frequencies and admixture estimates in four Mexican urban centers. Hum Biol 1990; 62: 791-801.
Restrepo MC, Pineda L, Rojas-Martínez A, Gutiérrez CA, Morales A, Gómez Y, et al. CFTR mutations in three Latin American countries. Am J Med Genet 2000; 91: 4, 277-9.
Casals T, Nunes V, Palacios A, Gimenez J, Gaona A, Ibanez N, et al. Cystic fibrosis in Spain: High frequency of mutation G542X in the Mediterranean coastal area. Hum Genet 1993; 91: 66-70.
Morral N, Dotk T, Dziadek V, Llevadot R, Ferec C. Patterns of haplotypes for 92 cystic fibrosis mutations: variability, association and recurrence. Am J Hum Genet 1994; 55: 918.
Niu T, Qin ZS, Xu X, Liu JS. Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 2002; 70: 157-69.
Morral N, Bertranpetit J, Estivill X, Nunes V, Casals T. The origin of the major cystic fibrosis mutation (delta-F508) in European populations. Nat Genet 1994; 7: 169-75.
Loirat F, Hazout S, Lucotte G. G542X as a probable Phoenician cystic fibrosis mutation. Hum Biol 1997; 3: 419-25.
Dork T, Wulbrand U, Richter T, Neumann T, Wolfes H. Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum Genet 1991; 87: 441-6.
Kiesewetter S, Macek M Jr, Davis C, Curristin SM, Chu CS, Graham C, et al. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 1993; 5: 274-8.
Cheng SH, Gregory RJ, Marshall J, Paul S, Suoza DW. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63: 827-34.
Amaral MD. CFTR and chaperone: processing and degradation. J Mol Neurosci 2004; 23: 41-8.
Hiestad DM, Sorcher EJ, Huang Z, Wang Y, Haley BE. Use of 2-N3ATP to identify the site of ATP interaction on nucleotide binding domain-2 from cystic fibrosis transmembrane conductance regulator. Pediatr Pulmonol 1994; 10: 42.
Carson MR, Travis SM, Welsh MJ. The two nucleotide-binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem 1995; 270: 1711-17.
Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drum ML, et al. Cystic fibrosis tansmembrane conductance regulator (CFTR) anion binding has a probe of the pore. Biophys J 1998; 74: 1320-32.
Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B and Cuppens H. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator. Hum Mol Genet 1998; 7: 1761-9.
Groman JD, Meyer ME, Wilmott RW, Zeitlin TL, Cutting GR. Variant cystic fibrosis phenotypes in the absence of CFTR. N Engl J Med 2002; 347: 401-7.
Sheppard ND, Ostedgaard SL. Understanding how cystic fibrosis mutations caused a loss of chloride channel function. Mol Med Today 1996; 290-7.
Kerem B, Corey M, Kerem BS, Rommens J, Markiewicz D. The relation between genotype and phenotype in cystic fibrosis–analysis of the most common mutation (delta F508). N Engl J Med 1990; 323: 1517-22.
Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P. Genotype and phenotype correlation in patients with cystic fibrosis and pancreatitis. Gastroenterology 2002; 123: 1857-64.
Doull I. Recent advances in cystic fibrosis. Arch Dis Child 2001; 85: 62-6.
Noone PG, Knowles MR. “CFTR-opathies”: disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir Res 2001; 2: 328-32.
Schellen TM, van Straaten A. Autosomal recessive hereditary congenital aplasia of the vasa deferentia in four siblings. Fertil Steril 1980; 35: 401-4.
Rowntree RK and Harris A. The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003; 67: 471-85.
Rave-Harel N, Madgar I, Goshen R, Nissim-Rafinia N, Ziadni A, Rahat A, et al. CFTR haplotype analysis reveals genetic heterogeneity in the etiology of congenital bilateral aplasia of the vas deferens. Am J Hum Genet 1995; 56: 1359-66.
Ninis VN, Kýlýnc MO, Kandemir M, Dadly E, Tolun A. High frequency of T9 and CFTR mutations in children with idiopathic bronchiectasis. J Med Genet 2003; 40: 530-5.
Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration 2000; 67: 117-33.
Sontag MK, Accurso FJ. Gene modifiers in pediatrics: application to cystic fibrosis. Adv Pediatr 2004; 51: 5-36.
Drumm ML. Modifier genes and variation in cystic fibrosis. Respir Res 2001; 2: 125-8.
Acton JD, Wilmott RW. Phenotype of CF and the effects of possible modifier genes. Pediatr Res Rev 2001; 2: 332-9.
Zielenski J, Corey M, Rozmahel R, Markiewics D, Aznares I, Casals T, et al. Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nat Genet 1999; 22: 128-9.
Salvatore F, Scudiero O, Castaldo G. Genotype-Phenotype Correlation in cystic fibrosis: the role of modifier genes. Am J Med Genet 2002; 111: 88-95.
Mateu E, Calafell F, Lao O, Bonne-Tamir B, Kidd JR. Worldwide genetic analysis of the CFTR region. Am J Hum Genet 2001; 68: 103-17.
Ravnick-Glavac M, Atkinson A, Glavac D, Dean M. DHPLC screening of cystic fibrosis gene mutations. Hum Mutat 2002; 19: 374-83.
D’Apice MR, Gambardella S, Bengala M, Russo S, Nardone AM, Lucidi V, et al. Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy. BMC Med Genet 2004; 5: 1-7.
Audrezet MP, Chen JM, Raguenes O, Chuzhanova N, Giteau K, Le Marechal C, et al. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 2004; 23: 343-57.
Fridell JA, Bond GJ, Mazariegos GV, Orenstein DM, Jain A, Sindhi R, et al. Liver transplantation in children with cystic fibrosis: a long-term longitudinal review of a single center’s experience. J Pediatr Surg 2003; 38: 1552-6.
Meyers BF, De la Morena M, Sweet SC, Trulock EP, Guthrie TJ, Mendeloff EN, et al. Primary graft dysfunction and other selected complications of lung transplantation: A single-center experience of 983 patients. J Thorac Cardiovasc Surg 2005; 129: 1421-9.
Guggino WB, Banks-Schlegel SP. Macromolecular interactions and ion transport in cystic fibrosis. Am J Respir Crit Care Med 2004; 170: 815-20.
Ramjeesingh M. Treatment of the nasal epithelium of CF mice with liposomes containing purified CFTR protein. Pediatr Pulmonol 1995; 12: S10.7.
Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992; 358: 761-4.
Tonghui M, Ventrivel M, Yang H, Pedemonte N, Zegarra-Morán O, Galietta LJ, Verkman AS. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 2002; 277: 37235-41.
Zhang XM, Wang XT, Yue H, Leung SW, Thibodeau PH, Thomas PJ, et al. Organic solutes rescue the functional defect in delta F508 cystic fibrosis transmembrane conductance regulator. J Biol Chem 2003; 278: 51232-42.
Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, et al. Curcumin, a major constituent of turmeric correct cystic fibrosis defect. Science 2004; 304: 600-2.
Davis PB, Drumm ML. Some like it hot: curcumin and CFTR. Trends Mol Med 2004; 10: 473-5.
Kerem E. Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 2004; 10: 547-52.
Drumm ML, Kelley TJ. Inhibition of specific phosphodiesterases in CF airway epithelial cells activates mutant CFTRs. Pediatr Pulmonol 1995; 12(Supl): 150-1.
Howell LD, Borchardt R, Kole J, Kaz AM, Randak C, Cohn JA. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Biochem J 2004; 378: 151-9.
Csanady L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, et al. Preferential phosphorylation of R-domine serine 768 dampens activation of CFTR channels by PKA. J Gen Physiol 2005; 125: 171-86.
Mason SJ, Paradiso AM, Boucher RC. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 1991; 103: 1649-56.
Griesenbach U, Geddes DM, Alton EW. Gene therapy for cystic fibrosis: an example for lung gene therapy. Gene Ther 2004; 11: S43-S50.
Driskell RA, Engelhardt JF. Current status of gene therapy for inherited lung diseases. Annu Rev Physiol 2003; 65: 585-612.
Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelial of patients with cystic fibrosis. Cell 1993; 75: 207-16.
Zabner J, Ramsey BW, Meeker DP, Aitken ML, Balfour RP. Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest 1996; 97: 1504-11.
Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 2001; 12: 751-61.
Aitken ML, Moss RB, Walts DA, Dovey ME, Tonelli MR. A phase I study of aerosolized administration of tg AAVCF to cystic fibrosis subjects with mild lung disease. Hum Gen Ther 2001; 12: 1907-16.
Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis multicenter, double-blind, placebo-controlled trial. Chest 2004; 125: 509-21.