2005, Number 1
<< Back Next >>
Arch Cardiol Mex 2005; 75 (1)
Evaluation of coronary flow by means of PET in the Mexican population without coronary artery disease
Alexánderson E, Ricalde A, Meave A
Language: Spanish
References: 51
Page: 13-22
PDF size: 88.61 Kb.
ABSTRACT
Myocardial viability detection is essential in patients with history of myocardial infarction whom develop ventricular dysfunction. Its detection influences the therapeutic decisions and the prognosis. Medical therapy in patients with ventricular dysfunction due to myocardial infarction and myocardial viability has been associated with higher morbidity and mortality rates than revascularization therapy, as well as improvements in the systolic function. Several imaging techniques used in the recognition of myocardial viability are available; these techniques are based on the assessment of the ventricular motion posterior to inotropic agents stimulation or on the demonstration of metabolic activity at the dysfunctional regions. In this study, some important aspects of each technique are reviewed, doing special emphasis in the utility of the Positron Emission Tomography (PET) which has been considered as the “gold standard” in the detection of myocardial viability.
REFERENCES
Rahimtoola SH: The hibernating myocardium. Am Heart J 1989; 117: 211-21.
Wijns W, Vatner S, Camici P: Hibernating Myocardium. N Engl J Med 1998; 339 (3): 173-81.
Maddahi J, Blitz A, Phelps M, Laks H: The use of positron emission tomography in management of patients with ischemic cardiomyopathy. Adv Card Surg, 1996; 7: 163-88.
Perrone-Filardi P, Chiariello M: The Identification of Myocardial Hibernation in Patients with Ischemic Heart Failure by Echocardiography and Radionuclide Studies. Prog Cardiovasc Dis 2001; 43(5): 419-32.
Marwick TH: The Viable Myocardium: Epidemiology, detection and clinical implications. Lancet 1998; 351: 815-19.
Alexanderson E, Kerik N, Unzek S, Fermon S: Principios y aplicaciones de la tomografía por emisión de positrones (PET) en la cardiología. PET en México: una realidad. Arch Cardiol Mex 2002; 72: 157-64.
Guadalajara JF: Cardiopatía Isquémica. En: Guadalajara JF. “Cardiología.” 5ª Edición. México, Ed. Méndez Editores, 2000: 671-761.
Borgers M, Thoné F, Wouters L, Ausma J, Shivalkar G, Flameng W: Structural correlates of regional myocardial dysfunction in patients with critical coronary artery stenosis: chronic hibernation? Cardiovasc Pathol 1993; 2: 237-45.
Depré C, Vanoverschelde JL, Melin JA: Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268: H1265-75.
Fitzgerald J, Parker A, Danias P: F-18 fluoro deoxyglucose SPECT for assessment of myocardial viability. J Nucl Cardiol 2000; 7(4): 382-7.
Bounous EP, Mark DB, Pollock BG. Surgical survival benefits for coronary disease patients with left ventricular dysfunction. Circulation 1998; 78: 151-57.
Armstrong WF, Bossone E: Evaluation of myocardial viability using stress echocardiography. Prog Cardiovasc Dis 1997; 39: 555.
Perrone-Filardi P, Pace L, Prastaro M: Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium following revascularization in patients with coronary artery disease. Circulation 1995; 91: 2556-65.
Stillman AE, Wilke N, Jerosch-Herold M: Myocardial Viability. Radiol Clin North Am 1999; 37(2): 361-78.
Maes A, Flameng W, Nuyts J: Histological alterations in chronically hypoperfused myocardium. Correlations with PET findings. Circulation 1994; 90: 735-45.
Cuocolo A, Acampa W, Nicolai E: Quantitative thallium-201 and technetium-99m sestamibi tomography at rest in detection of myocardial viability in patients with chronic ischemic left ventricular dysfunction. J Nucl Cardiol 2000; 7:8 -15.
Dutka DP, Camici PG: The contribution of positron emission tomography to the study of ischemic heart failure. Prog Cardiovasc Dis 2001; 43(5): 399-418.
Schelbert HR: Metabolic imaging to assess myocardial viability. J Nucl Med 1994; 35: 8S.
Knuuti MJ, et al: Euglycemic Hyperinsulinemic Clamp and Oral Glucose Load in Stimulating Myocardial Glucose Utilization During Positron Emission Tomography. J Nucl Med 1992; 33(7): 1255-1262.
Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, Teras M, Haaparanta M, et al: Enhancement of Myocardial [Fluorine-18]Fluorodeoxyglucose Uptake By a Nicotinic Acid Derivative. Journal of Nuclear Medicine, 1994; 35(6): 989-998.
Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH, Visser CA: Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997 Jan; 24(1): 35-41.
van Lingen A, Huijgens PC, Visser FC, Ossenkoppele GJ, Hoekstra OS, Martens HJ, et al: Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. European Journal of Nuclear Medicine, 1992; 19(5): 315-21.
Sandler MP, Patton JA: Fluorine 18-labeled fluorodeoxyglucose myocardial single-photon emission computed tomography: an alternative for determining myocardial viability. J Nucl Cardiol 1996; 3(4): 342-9.
Sandler MP, Bax JJ, Patton JA, Visser FC, Martin WH, Wijns W, et al: Fluorine-18-fluorodeoxyglucose cardiac imaging using a modified scintillation camera. J Nucl Med 1998; 39(12): 2035-43.
Bax JJ, Visser FC, van Lingen A, Huitink JM, Kamp O, van Leeuwen GR, et al: Feasibility of Assessing Regional Myocardial Uptake of F-18-Fluorodeoxyglucose Using Single Photon Emission Computed Tomography. European Heart Journal, 1993; 14(12): 1675-1682.
Bax JJ, Visser FC, van Lingen A, Groeneveld AB, Huitink JM, Teule GJ, et al: Relation Between Myocardial Uptake of Thallium-201 Chloride and Fluorine-18 Fluorodeoxyglucose Imaged With Single-Photon Emission Tomography in Normal Individuals. European Journal of Nuclear Medicine, 1995; 22(1): 56-60.
Sandler MP, Videlefsky S, Delbeke D, Patton JA, Meyerowitz C, Martin WH, et al: Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol, 1995; 26(4): 870-8.
Martin WH, Delbeke D, Patton JA, Hendrix B, Weinfeld Z, Ohana I, et al: FDG-SPECT: correlation with FDG-PET. J Nucl Med. 1995; 36(6): 988-95.
Delbeke D, Videlefsky S, Patton JA, Campbell MG, Martin WH, Ohana I, et al: Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med. 1995; 36(11): 2110-9.
Stoll HP, Hellwig N, Alexander C, Ozbek C, Schieffer H, Oberhausen E: Myocardial metabolic imaging by means of fluorine-18 deoxyglucose/technetium-99m sestamibi dual-isotope single-photon emission tomography. Eur J Nucl Med 1994; 21(10): 1085-93.
Bax JJ, Valkema R, Visser FC, van Lingen A, Cornel JH, Poldermans D, et al: FDG SPECT in the assessment of myocardial viability. Comparison with dobutamine echo. European Heart Journal, 1997; 18 Suppl D(11): D124-9.
Burt RW, Perkins OW, Oppenheim BE, Schauwecker DS, Stein L, Wellman HN, et al: Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 1995; 36(2): 176-9.
Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, et al: Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol. 1996; 28(3): 558-64.
Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V: [F-18] fluorodeoxyglucose single photon emission computed tomography: Can it replace PET and thallium SPECT for the assessment of myocardial tomography? Circulation, 1998; 97(9): 843-850.
Chen EQ, MacIntyre WJ, Go RT, Brunken RC, Saha GB, Wong CY, et al: Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 1997; 38(4): 582-6.
Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH: Sensitivity, specificity and predictive accuracies of various non-invasive techniques for hibernating myocardium. Curr Probl Cardiol 2001; 26(2): 141-6.
Bax JJ, Visser FC, Elhendy A, Poldermans D, Cornel JH, van Lingen A, et al: Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria. J Nucl Med 1999; 40(11): 1866-73.
Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L, et al: Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992; 19(10): 874-81.
Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314(14): 884-8.
Depre C, Vanoverschelde JL, Melin JA, Borgers M, Bol A, Ausma J, et al: Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. American Journal of Physiology, 1995; 268(3 Pt 2): H1265-75.
Paolini G, Lucignani G, Zuccari M, Landoni C, Vanoli G, Di Credico G, et al: Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardiothorac Surg 1994; 8(3): 139-44.
Eitzman D, al-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, et al: Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992 Sep; 20(3): 559-65.
Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994 Mar 15; 73(8): 527-33.
Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al: Relation Among Stenosis Severity, Myocardial Blood Flow, and Flow Reserve in Patients With Coronary Artery Disease. Circulation 1995; 91(7): 1944-1951.
Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al: Relationship between preoperative viability and postoperative improvement in LVEF and hear failure symptoms. J Nucl Med, 2001; 42(1): 79-86.
Yoshida K, Gould KL: Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. Journal of the American College of Cardiology 1993; 22(4): 984-97.
Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, et al: Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994; 90(6): 2687-94.
Di Carli MF: Predicting improved function after myocardial revascularization. Current Opinion in Cardiology 1998; 13(6): 415-24.
Duong T, Hendi P, Fonarow G, Asgarzadie F, Stevenson L, Di Carli M, et al: Role of positron emission tomographic assesment of myocardial viability in the management of patients who are referred for cardiac transplantation. Circulation 1995; 92(8): I-123.
Beanlands RS, deKemp R, Scheffel A, Nahmias C, Garnett ES, Coates G, et al: Can nitrogen-13 ammonia kinetic modeling define myocardial viability independent of fluorine-18 fluorodeoxyglucose? J Am Coll Cardiol 1997 Mar 1; 29(3): 537-43.
Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD: Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998; 98(19 Suppl): II51-6.