2008, Number 4
<< Back Next >>
Bol Med Hosp Infant Mex 2008; 65 (4)
Pancreas and b cells: Differentiation mechanisms, morphogenesis and endocrine cellular specification. Regeneration?
Olvera-Granados CP, Leo-Amador GE, Hernández-Montiel HL
Language: Spanish
References: 145
Page: 306-324
PDF size: 303.73 Kb.
ABSTRACT
Diabetes mellitus type 1 is a multifactorial metabolic disease in which immunological mechanisms play an essential role. Once the disease is fully established, affected individuals are dependent upon exogenous insulin administration. Current research has identified a pancreatic population resembling stem cells features. This population of nestin-positive cells is activated under specific circumstances and opens the possibility of developing procedures for obtaining new ß cells for the regeneration of the pancreatic islets. In this work we review the embryonic development of pancreas, pancreatic stem cells, the current models for the induction of stem cells in adult pancreas, the role of free radicals on the induction of new stem cells, and the current therapeutic procedures to improve the expression of these cells.
REFERENCES
Lipsett M, Aikin R, Castellarin M, Hanley S, Jamal A, Laganiere S, et al. Islet neogenesis: A potential therapeutic tool in type 1 diabetes. Int J Biochem Cell Biol. 2006; 38: 715-20.
Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Åkerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005; 54: 125-36.
You S, Belghith M, Cobbold S, Alyanakian MA, Gouarin C, Barriot S, et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005; 54: 1415-22.
Vinik A, Rosenberg L, Pittenger G, Taylor-Fishwick D. Stimulation of pancreatic islet neogenesis: a possible treatment for type 1 and type 2 diabetes. Curr Opin Endocrinol Diabetes. 2004; 11: 125-40.
Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Therap. 2005; 12: 580-91.
Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz P. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985; 4: 110-25.
Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 1988; 236: 406-10.
Wolff S. Diabetes mellitus and free radicals. Br Med Bull. 1993; 49: 642-52.
Domínguez C, Ruiz E, Gussinye M, Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care. 1998; 21: 1736-42.
Rosenberg L, Vinik A. Induction of endocrine cell differentiation: a new approach to management of diabetes. J Lab Clin Med. 1989; 114: 75-83.
Ueno H, Yamada Y, Watanabe R, Mukai E, Hosokawa M, Takahashi A, et al. Nestin-positive cells in adult pancreas express amylase and endocrine precursor cells. Pancreas. 2005; 31: 126-31.
Yue F, Cui L, Johkura K, Ogiwara N, Sasaki K. Glucagon-like peptide-1 differentiation of primate embryonic stem cells into insulin-producing cells. Tissue Engineering. 2006; 12: 2105-16.
Zulewski H. Stem cells with potential to generate insulin-producing cells in man. Swis Med Wkly. 2006; 136: 647-54.
Ross, Romrell and Kaye. Título del libro????. 3a ed. México: Panamericana; 1997. p. 511- 4.
Stevens A, Lowe J. Texto y atlas de histología. Ciudad??? Harcourt Brace; 1998. p. 257-69.
Mutoh K, Wakuri H, Liu B, Seno M, Taniguchi K. Electron microscopic study of intercalated duct cells in the chicken pancreatic islet and effects of tolbutamide administration. Okajimas Folia Anat Jpn. 1998; 75: 231-7.
Nagasao J, Yoshioka K, Amasaki H, Mutoh K. Expression of S-100 protein in intercalated duct cells of bovine pancreas. Okajimas Folia Anat Jpn. 2002; 78: 229-33.
Mastsumara G, England M. Embriología representaciones gráficas. España: Mosby/Doyma libros; 1996. p. 208.
Deutsch G, Jung J, Zheng M, Lóra J, Zaret K. A bipotential precursor population for pancreas and liver with in the embryonic endoderm. Development. 2001; 128: 871-81.
Ahlgren U, Jonsson J. Beta-cell-specific inactivation of the mouse Ipf-1/Pdx 1 gene results in loss of the beta cell phenotype and maturity onset diabetes. Genes Dev. 2001; 12: 1763-8.
Zulewski H, Abraham E, Gerlach M, Daniel P, Moritz W, Müller B, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes. 2001; 50: 521-33.
Bowens L. Cytokeratins and cell differentiation in the pancreas. J Pathol. 1998; 184: 234-9.
Lavon N, Yanuka O, Benvenisty N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells. 2006; 24: 1923-30.
Rosenberg L. In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells. Cell Transplant. 1995; 4: 371-83.
Edlund H. Transcribing pancreas. Diabetes. 1998; 47: 1817-23.
Pictet R, Rutter W. Development of the embryonic endocrine pancreas in Handbook of Physiology, section 7. En: Steiner DF, Freinkel N, editores. Endocrinology. Washington, DC: American Physiological Society; 1972. p. 25-66.
Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001; 294: 564-7.
Teitelman G. On the origin of pancreatic endocrine cells, proliferation and neoplastic transformation. Tumor Biol. 1993; 14: 167-73.
Rafaeloff R, Pittenger G, Barlow S, Qin X, Yan B, Rosenberg L, et al. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest. 1997; 99: 2100-9.
Shih D, Screenan S, Muñoz K, Philipson L, Pontoglio M, Yaniv M, et al. Loss of HNF-1alfa function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes. 2001; 50: 2472-80.
Peers B, Leonard J, Sharma S, Teitelman G, Montminy M. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol Endocrinol. 1994; 8: 1798-806.
Guz Y, Montminy M, Stein R, Leonard J, Gamer L, Wright C, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 1995; 121: 11-8.
Wang R, Li J, Rosemberg L. Factors mediating the transdifferentiation of islets of Langerhans to duct epithelial-like structures. J Endocrinol. 2001; 171: 309-18.
Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998; 15: 1763-8.
Hart A, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF-signaling in mouse beta-cells leads to diabetes. Nature. 2000; 408: 864-8.
Fajans S, Bell G, Polonsky K. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001; 345: 971-80.
Song S, Gannon M, Washington M, Scoggins C, Meszoely I, Goldenring J, et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology. 1999; 117: 1416-26.
Kritzik M, Jones E, Chen Z. Pdx-1 and Msx-2 expression in the regeneration and developing pancreas. J Endocrinol. 1999; 163: 523-30.
Hoem D, Dalen H, Andrén-Sandberg A, Höstmark J. Nonadhesive organ culture of human exocrine pancreatic cells with their stroma. Pancreas. 2002; 25: 71-7.
Taylor-Fishwick D, Rittman S, Kendall H, Roy L, Shi W, Cao Y, et al. Cloning genomic INGAP: a Reg-related family member with distinct transcriptional regulation sites. Biochim Biophys Acta. 2003; 1638: 83-9.
Edlund H. Developmental biology of the pancreas. Diabetes. 2001; 50 Suppl. 1: S5-S92.
Sender M, German M. The B cell transcription factors and the development of the pancreas. J Mol Med. 1997; 75: 327-40.
Heremans Y, van de Casteele M, Veld P, Gradwohl G, Serup P, Madsen O, et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cell expressing neurogenin 3. J Biol Chem. 2002; 159: 303-12.
Kim S, Hebrok M. Intracellular signals regulating pancreas development and function. Genes Dev. 2001; 15: 111-27.
Yaspal N, Li J, Wang R. Caracterización de la expresión de c-kit y nestina durante el desarrollo de los islotes en páncreas de rata prenatal y postnatal. Dev Dyn. 2004; 229: 813-25.
Edlund H. Pancreatic organogenesis-developmental mechanisms and implications for therapy. Nat Rev Genet. 2002; 3: 524-32.
Ang S, Wierda A, Wong D, Stevens K, Cascio S, Rossant J, et al. The formation and maintenance of the de finitive endoderm lineage in the Mouse: Involvement of HNF3/fork-head proteins. Development. 1993; 119: 1301-15.
Chakrabarti S, Mirmira R. Transcription factors direct the development and function of pancreatic b cells. Trends Endocrinol Metab. 2003; 14: 78-84.
Magliocca V, Odorico J, Treff N, Vincent R, Budde M, Victoria L, et al. Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells. 2006; 29: 2529-37.
Ta M, Choi Y, Atouf F, Park C, Lumelsky N. The defined combination of growth factors controls generation of long-term replicating islet progenitor-like cells from cultures of adult mouse pancreas. Stem Cells. 2006; 24: 1738-49.
Lee C, de León D, Kaestner K, Stoffers D. Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes. 2006; 55: 269-72.
Drucker D. Glucagon like peptides. Diabetes. 1998; 47: 159-69.
Stoffers D, Kieffer T, Hussain M, Drucker D, Bonner-Weir S, Habener J, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000; 49: 741-8.
Abraham E, Leech C, Lin J, Zulewski H, Habener J. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology. 2002; 143: 3152-61.
Maake C, Reinecke M. Immunohistochemical localization of insulin-like growth factor 1 and 2 in the endocrine pancreas of rat, dog, and man, and their coexistence with classical islet hormones. Cell Tissue Res. 1993; 273: 249-59.
Nagasao J, Yoshioka K, Amasaki H, Tsujio M, Taniguchi K, Mutoh K. Morphological changes in the rat endocrine pancreas within 12 h of intravenous streptozotocin administration. Anat Histol Embryol. 2005; 34: 42-7.
Bonner-Weir S. b cell turnover. Its assessment and implications. Diabetes. 2001; 50 Suppl. 1: S20–4.
Welsh M, Annernan C, Lindholm C, Kriz V, Oberg-Welsh C. Role of tyrosin kinase signaling for beta-cell replication and survival. Ups J Med Sci. 2000; 105: 715.
Rachdi L, Ghazi L, Bemex F, Panthier J, Czernichow P, Scharfmann R. Expression of the receptor tyrosine kinase KIT in mature b cells and in the pancreas in development. Diabetes. 2001; 50: 2021-8.
Keller J, Ortiz M, Ruscetti F. Steel factor (c-kit ligand) promotes the survival of haematopoietic stem/progenitor cells in absence of cell division. Blood. 1995; 86: 1757-64.
Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, et al. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med. 1991; 174: 63-71.
Scaglia L, Smith F, Bonner-Weir S. Apoptosis contributes to the involution of b-cell mass in the post partum rat pancreas. Endocrinology. 1995; 136: 5461-8.
Herrera P. Defining the cell lineages of the islets of Langerhans using transgenic mice. Int J Dev Biol. 2002; 46: 97-103.
Finegood D, Scaglia L, Bonner-Weir S. Dynamics of b-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes. 1995; 44: 249-56.
Weir G, Laybutt D, Kaneto H, Bonner-Weir S, Sharma A. b-cell adaptation and decompensation during the progression of diabetes. Diabetes. 2001; 50 Suppl. 1: S154-9.
Pipeleers D. Heterogeneity in pancreatic â-cell population. Diabetes. 1992; 41: 777-81.
Montanya E, Nacher V, Biarnes M, Soler J. Linear correlation between b-cell mass and body weight throughout the lifespan in Lewis rats: role of b-cell hyperplasia and hypertrophy. Diabetes. 2000; 49: 1341-6.
Niki T, Pekny M, Hellmans K, Bleser P, Berg K, Vaeyens F, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology. 1999; 29: 520-7.
Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 2001; 60: 588-97.
Ramiya V, Maraist M, Arfors K, Schatz D, Peck A, Cornelius J. Reversal of insulin-dependent diabetes using islets generated in vitro form pancreatic cells. Nat Med. 2000; 6: 278-82.
Bonner-Weir S, Taneja M. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000; 97: 7999-8004.
Hunziker E, Stein M. Nestin-expressing cells in the pancreatic islets of Langerhans. Biochem Biophys Res Commun. 2000; 271: 116-9.
Soria E, Roche E, Berná G, León-Quinto T, Reig J, Martín F. Insulin-secreting cells derived form embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000; 49: 157-62.
Lendahl G, Zimmerman L, McKay R. CNS stem cells express a new class of intermediate filament protein. Cell. 1990; 60: 585-95.
Wang X, Hu J, Zhao D, Wang G, Tan L, Du L, et al. NestinnegCD24low/- population from fetal nestin-EGFP transgenic mice enriches the pancreatic endocrine progenitor cells. Pancreas. 2005; 31: 385-91.
Mokry J, Nemecek S. Immunohistochemical detection of intermediate filament nestin. Acta Med. 1998; 41: 73-80.
Chou Y, Khuon S, Herrmann H, Goldman R. Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell. 2003; 14: 1468-78.
Edlund H. Pancreas: how to get there from the gut? Curr Opin Cell Biol. 1999; 11: 663-8.
Habener J, Stoffers D. A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians. 1998; 110: 12-21.
Zhang L, Hong T, Hu J, Liu Y, Wu Y, Li L. Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal item cells. World J Gastroenterol. 2005; 11: 2906-11.
Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143-7.
Pittenger M, Mosca J, McIntosh K. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol. 2000; 251: 3-11.
Schawartz R, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002; 109: 1291-302.
Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature. 1990; 347: 762-5.
Yang L, Li S, Hatch H, Ahrens K, Cornelius J, Petersen B, et al. Proc Natl Acad Sci USA. 2002; 99: 8078-83.
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001; 292: 1389-94.
Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. PNAS. 2003; 100: 998-1003.
Eberhardt M, Salmon P, von Mach M, Hengstler J, Brulport M, Linscheid P, et al. Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun. 2006; 345: 1167-76.
Kim H, Kang H, Messam C, Min K, Park C. Comparative evaluation of angiogenesis in gastric adenocarcinoma by nestin and CD34. Appl Immunohistochem Mol Morphol. 2002; 10: 121-7.
Sultana S, Zhou R, Sadagopan M, Skalli O. Effects of growth factors and basement membrane proteins on the phenotype of U-373 MG glioblastoma cells as determined by the expression of intermediate filament proteins. Am J Pathol. 1998; 153: 1157-68.
Selander L, Edlund H. Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev. 2002; 113: 189-92.
Toshiyuki I, Mitsuhiro K, Munihiko O, Takenori F, Kiyoshi T, Taeko S, et al. Defined localization of nestin-expressing cells in l-arginine-induced acute pancreatitis. Pancreas. 2006; 32: 360-8.
Nagasao J, Yoshioka K, Amasaki H, Mutoh K. Expression of nestin and IGF-1 in rat pancreas after streptozotocin administration. Anat Histol Embryol. 2004; 33: 1-4.
Rooman I, Heremans Y, Heimberg H, Bouwens L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia. 2000; 43: 907-14.
Rooman I, Lardon J, Flamez D, Schuit F, Bouwens L. Mitogenic effect of gastrin and expression of gastrin receptors in duct-like cells of rat pancreas. Gastroenterology. 2001; 121: 940-9.
Rooman I, Lardon J, Bouwens L. Gastrin stimulate beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes. 2002; 51: 686-90.
Bouckenooghe T, Vandewalle B, Lukowiak B, Kerr-Conte J, Belaich S, Gmyr V, et al. Modulation of specific beta cell gene (re) expression during in vitro expansion of human pancreatic islet cells. Cell Transplant. 2003; 12: 799-807.
Dor Y, Brown J, Martínez O, Melton D. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004; 429: 41-6.
Bouwens L, Rooman I. Regulation of pancreatic beta-cells mass. Physiol Rev. 2005; 85: 1255-70.
Yamamoto M, Kudoh A, Arishima K, Eguchi Y. Immunocytochemical changes in the fetal pancreatic islet following fetal administration of streptozotocin in the rat. Anat Rec. 1997; 247: 248-52.
Wang Z, Gleichmann H. GLUT2 in pancreatic islets. Crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes. 1998; 47: 50-6.
Eizirik D, Sandler S, Ahnstrom G, Welsh M. Exposure of pancreatic islets to different alkylating agents decreases mitochondrial DNA content but only streptozotocin induces long-lasting functional impairment of b cells. Biochem Pharmacol. 1991; 42: 2275-82.
Wang R, Klöppel G, Bouwens L. Beta cell growth in adolescent and adults rats treated with streptozotocin during neonatal period. Diabetologia. 1996; 39: 548-57.
Hicks JJ, Torres-Ramos YD, Sierra-Vargas M. Estrés oxidante. Concepto y clasificación. Rev Endocrinol Nutr. 2006; 14: 223-6.
Poon H, Calabrese V, Scapagnini G, Butterfield D. Free radicals and brain aging. Clin Geriatr Med. 2004; 20: 329-59.
Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004; 53: S16-S210.
MacDonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. J Biol Chem. 1995; 270: 20051-8.
Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC. Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem. 2002; 277: 10912-21.
Laybutt DR, Glandt M, Xu G, Ahn YB, Trivedi N, Bonner-Weir S, et al. Critical reduction in beta-cell mass results in two distinct outcomes over time: adaptation with impaired glucose tolerance or decompensated diabetes. J Biol Chem. 2003; 278: 2997-3005.
Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev. 1994; 15: 516-42.
Campbell IL, Iscarro A, Harrison LC. IFN-gama and tumor necrosis factor-alfa cytotoxicity to murine islets of Langerhans. J Immunol. 1998; 141: 2325-9.
Mandrup-Poulsen T, Helqvist S, Wogensen LD. Cytokines and free radicals as effector molecules in the destruction of pancreactic beta cells. Curr Top Microbiol Immunol. 1990; 164: 169-93.
Rabinovitch A, Suárez-Pinzón WL, Strynadka K. Human pancreatic islet beta- cell destruction by cytokines is independent of nitric oxide production. J Clin Endocrinol Metab. 1994; 79: 1058-62.
Mandrup-Poulsen T, Corbett JA, McDaniel ML, Nerup J. What are the types and cellular sources of free radicals in the pathogenesis of type 1 (insulin-dependent) diabetes mellitus? Diabetologia. 1993; 36: 470-3.
Rabinovitch A, Suárez-Pinzón WL, Sorensen O, Bleackley RC. Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice: identification of iNOS-expressing cells and relationships to cytokines expressed in the islets. Endocrinology. 1996; 137: 2093-9.
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Applied Pharmacol. 2006; 212: 167-78.
Cornelius JG, Luttge BG, Peck AB. Antioxidant enzyme activities in IDD-prone and IDD-resistant mice. A comparative study. Free Radic Biol Med. 1993; 14: 409-20.
Slater TF. Free radical mechanism in tissue injury. Biochem J. 1984; 222: 1-15.
Fukunaga K, Takama K, Suzuki T. High-performance liquid chromato-graphic determination of plasma malondialdehyde level without a solvent extraction procedure. Anal Biochem. 1995; 230: 20-3.
Eizirik D, Flodstrom M, Karlsen A, Welsh N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia. 1996; 39: 875-90.
Bonfigli A, Colafarina S, Falone S, Di Giulio C, Di Ilio C, Amicarelli F. High levels of antioxidant enzymatic defense assure good protection against hypoxic stress in spontaneously diabetic rats. Int J Biochem Cell Biol. 2006; 38: 2196-208.
Bouwens L, Kloppel G. Islet cell neogenesis in the pancreas. Virchows Arch. 1996; 427: 553-60.
Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol. 2000; 24: 297-302.
Gandy S, Galbraith R, Crouch R, Buse M, Galbraith G. Superoxide dismutase in human islets of Langerhans. N Engl J Med. 1981; 304: 1547-8.
Grankvist K, Marklund S, Taljedal I. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. 1981; 199: 393-8.
Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996; 20: 463-6.
Malaisse W, Malaisse-Lagae F, Sener A, Pipeleers D. Determinants of the selective toxicity of alloxan to the pancreatic beta cell. Proc Natl Acad Sci USA. 1982; 79: 927-30.
Kroncke K, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H. Activated macrophages kill pancreatic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun. 1991; 175: 752-8.
Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia. 1996; 39: 1005-29.
Imaeda A, Kaneko T, Aoki T, Kondo Y, Nagase H. DNA damage and the effect of antioxidants in streptozotocin-treated mice. Food Chem Toxicol. 2002; 40: 979-87.
Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982; 21: 6628-33.
Steitz TA. A mechanism for all polymerase. Nature. 1998; 391: 231-2.
Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J. Pancreatic b cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med. 1998; 188: 1445-51.
Tourrel C, Bailbé D, Meile M, Kergoat M, Portha B. Glucagon-like peptide-1 and exendin-4 stimulate b cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improve glucose homeostasis at adult age. Diabetes. 2001; 50: 1562-70.
Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver ameliorates streptozotocin-induced hyperglycemia. Nat Am Inc. 2000; 6: 568-72.
Rooman I, Bouwens L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57B16/J mice treated with alloxan. Diabetologia. 2004; 47: 259-65.
Li L, Seno M, Yamada H, Kojima I. Promotion of b-cell regeneration by betacellulin in ninety percent-pancreatectomized rats. Endocrinology. 2001; 142: 5379-85.
Ogawa N, List J, Habener J, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes. 2004; 53: 1700-5.
Spence J, Wells J. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Din. 2007; 236: 3218-27.
Cano D, Hebrok M, Zenker M. Pancreatic development and disease. Gastroenterology. 2007; 132: 745-62.
Murtaugh L. Pancreas and beta-cell development: from the actual to the possible. Development. 2007; 134: 427-38.
Hammerman M. Growing new endocrine pancreas in situ. Clin Exp Nephrol. 2006; 10: 1-7.
Tam P, Kanai-Azuma, Kanai Y. Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Curr Opin Gen Dev. 2003; 13: 393-400.
Cerf M. Transcription factors regulating b-cell function. Eur J Endocrinol. 2006; 155: 671-9.
Spagnoli F. From endoderm to pancreas: a multistep journey. Cell Mol Life Sci. 2007; 64: 2378-90.