2008, Number 2
<< Back Next >>
Gac Med Mex 2008; 144 (2)
El ADN de Leishmania mexicana activa al macrófago murino e induce aumento en la expresión de TLR9
Martínez-Salazar B, Berzunza-Cruz M, Becker I
Language: Spanish
References: 18
Page: 99-104
PDF size: 114.76 Kb.
ABSTRACT
Background: Macrophages are immune system cells that recognize pathogen associated molecular patterns (PAMPs) through receptors that can be located on the cell membrane or in intracellular compartments, such as the TLR (toll like receptors). Different TLRs bind to ligands shared among multiple pathogens. The binding of ligands to TLRs induces a signaling cascade that leads to cytokine and co-stimulatory molecule production due to the nuclear translocation of NF-κB. We demonstrated that
Leishmania lipophosphoglycan (LPG) is a ligand for TLR2, leading to NK-cell activation. Schieicher et al. recently reported that genomic DNA from
Leishmania infantum activates plasmacitoid dendritic cells through TLR9, leading to IFN type I production.
Objective: In the present study we explored wether
Leishmania mexicana DNA contained non-methylated CpG motifs able to activate murine bone marrow derived macrophages, as previously described for bacterial DNA containing CpG motifs.
Results and conclusions: We observed that
Leishmania mexicana DNA contains non-methylated CpG motifs able of activating murine bone marrow derived macrophages, leading to the production of proinflammatory cytokines such as TNFα and IL-12
P40 as well as the over expression of mRNA for TLR9.
REFERENCES
Handman E. Cell biology of Leishmania. Adv Parasitol 1999;44:1-39.
Herwaldt BL. Leishmaniasis. Lancet 1999;354:1191-1199.
Velasco C, Guzmán B, Sánchez R, Torrentera A, Hernández M. Las leishmaniosis con especial referencia a México. México: INDRE; 1994.
Agudelo S, Robledo S. Respuesta inmune en infecciones humanas por Leishmania spp. 200;13:167-178.
Guha-Niyogi A, Sullivan DR, Turco SJ. Glycoconjugate structures of parasitic protozoa. Glycobiology 2001;11:45R-59R.
Takeda K, Kaisho T, Akira S. Toll like receptors. Annu Rev Immunol 2003;21:335-76.
Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197-216.
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll like receptor recognizes bacterial DNA. Nature 2000;408:740-745.
Latz E, Visintin A, Espevik T, Golenbock DT. Mechanisms of TLR9 activation. J Endotoxin Res 2004;10:406-412.
Wagner H. The immunobiology of the TLR9 subfamily. Trends Immunol 2004;25:381-386.
Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG, et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol 2003;130:65-74.
Schleicher U, Liese J, Knippertz I, Kurzmann C, Hesse A, Heit A, et al. NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 2007;204:893-906.
Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 2006;177:3515-3519.
Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 2007;104:1919-1924.
An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, et al. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 2002;106:38-45.
Krieg AM. Immune effects and mechanisms of action of CpG motifs. Vaccine 2000;19:618-622.
Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004;4:249-258.
Verthelyi D, Gursel M, Kenney RT, Lifson JD, Liu S, Mican J, et al. CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection. J Immunol 2003;170:4717-4723.