2008, Number 2
<< Back Next >>
Ann Hepatol 2008; 7 (2)
Black bean extract ameliorates liver fibrosis in rats with CCl4-induced injury
López-Reyes AG, Arroyo-Curras N, Cano BG, Lara-Díaz VJ, Guajardo-Salinas GE, Islas JF, Morales-Oyarvide V, Morales-Garza LA, Galvez-Gastelum FJ, Grijalva G, Moreno-Cuevas JE
Language: English
References: 32
Page: 130-135
PDF size: 179.40 Kb.
Text Extraction
We assessed the anti-fibrotic effects of methanolic black bean extract antioxidants in a carbon tetrachloride (CCl4) liver injury model in rats. Experimentally intoxicated animals received CCl4 for eight weeks, the reference and test groups received daily intragastric quercetin or daily intragastric black bean extract. Liver fibrosis was assessed and quantified using morphometric analysis. Expression of fibrosis related genes was measured by real time RT-PCR. Qualitative and quantitative histological analysis showed that administration of 70 mg/kg b.w. of black bean extract reduced hepatic fibrosis index by 18% compared to positive controls (P 0.006), as a result of a decrease in type I (44.3% less, P 0.03) and type IV (68.9% less, P 0.049) collagen gene expression compared to CCl4-injured and Quercetin treated rats. In conclusion, we provide evidence that this methanol black bean extract ameliorates liver fibrosis and types I and IV collagen gene expression, in the animal model used.
Practical applications: The compounds contained in this black bean extract exhibited strong antifibrotic effects in the CCl4 chronic liver injury model used; considering that this compounds are contained in a leguminous that has been used in human diet for a long time, their toxic potential should be very low, and this characteristic should favor their potential use in some other chronic or degenerative states that include an increase in inflammation and oxidative burst in their pathogenesis. Another possible application of this kind of extract could be its use as an antimicrobial or even antiparasitic therapeutic agent, although it is purely speculative.
REFERENCES
Sokol RJ. Liver cell injury and fibrosis. J Pediatr Gastroenterol Nutr 2002; 35 Suppl 1: S7-10.
Tapia G, Pepper I, Smok G, Videla LA. Kupffer cell function in thyroid hormone-induced liver oxidative stress in the rat. Free Radic Res 1997; 26(3): 267-79.
Poli G. Pathogenesis of liver fibrosis: Role of oxidative stress. Mol Aspects Med 2000; 21(3): 49-98.
Britton RS, Bacon BR. Intracellular signaling pathways in stellate cell activation. Alcohol Clin Exp Res 1999; 23(5): 922-5.
Tsukamoto H, Rippe R, Niemela O, Lin M. Roles of oxidative stress in activation of kupffer and ito cells in liver fibrogenesis. J Gastroenterol Hepatol 1995; 10 Suppl 1: S50-3.
Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 1995; 96(5): 2461-8.
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4): 2247-50.
Gonzalez-Gallego J, Culebras-Fernández JM, Mataix-Verdú J, Tunon MJ, Sánchez-Campos S. Papel protector de los flavonoides de la cerveza frente a las alteraciones hepáticas inducidas por estrés oxidativo: Estudio de los mecanismos moleculares involucrados. España: Centro de Información cerveza y Salud; 2003 [http://www.cervezaysalud.com/estudio_12.pdf, cited 01/14/2008].
Middleton Jr E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
Lee MH, Yoon S, Moon JO. The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biol Pharm Bull 2004; 27(1): 72-6.
Beninger CW, Hosfield GL, Nair MG. Flavonol glycosides from the seed coat of a new manteca-type dry bean (phaseolus vulgaris L.). J Agric Food Chem 1999; 47(1): 352.
Romani A, Vignolini P, Galardi C, Mulinacci N, Benedettelli S, Heimler D. Germplasm characterization of zolfino landraces (phaseolus vulgaris L.) by flavonoid content. J Agric Food Chem 2004; 52(12): 3838-42.
Mazur WM, Duke JA, Wähälä K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. J Nutr Biochem 1998; 9(4): 193-200.
Pavanato A, Tunon MJ, Sanchez-Campos S, Marroni CA, Llesuy S, Gonzalez-Gallego J, et al. Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis. Dig Dis Sci 2003; 48(4): 824-9.
Heimler D, Vignolini P, Dini MG, Romani A. Rapid tests to assess the antioxidant activity of phaseolus vulgaris L. dry beans. J Agric Food Chem 2005; 53(8): 3053-6.
Garcia L, Hernandez I, Sandoval A, Salazar A, Garcia J, Vera J, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37(6): 797-805.
Delgado-Rizo V, Salazar A, Panduro A, Armendariz-Borunda J. Treatment with anti-transforming growth factor beta antibodies influences an altered pattern of cytokines gene expression in injured rat liver. Biochim Biophys Acta 1998; 1442(1): 20-7.
Salazar-Montes A, Delgado-Rizo V, Armendáriz-Borunda J. Differential gene expression of pro-inflammatory and anti-inflammatory cytokines in acute and chronic liver injury. Hepatology Research 2000; 16(3): 181-94.
Lee KS, Lee SJ, Park HJ, Chung JP, Han KH, Chon CY, et al. Oxidative stress effect on the activation of hepatic stellate cells. Yonsei Med J 2001; 42(1): 1-8.
He SX, Luo JY, Wang YP, Wang YL, Fu H, Xu JL, et al. Effects of extract from ginkgo biloba on carbon tetrachloride-induced liver injury in rats. World J Gastroenterol 2006; 12(24): 3924-8.
Mohamed AF, Ali Hasan AG, Hamamy MI, Abdel-Sattar E. Antioxidant and hepatoprotective effects of eucalyptus maculata. Med Sci Monit 2005; 11(11): BR426-31.
Zhong Z, Froh M, Lehnert M, Schoonhoven R, Yang L, Lind H, et al. Polyphenols from camellia sinenesis attenuate experimental cholestasis-induced liver fibrosis in rats. Am J Physiol Gastrointest Liver Physiol 2003; 285(5): G1004-13.
Parola M, Leonarduzzi G, Biasi F, Albano E, Biocca ME, Poli G, et al. Vitamin E dietary supplementation protects against carbon tetrachloride-induced chronic liver damage and cirrhosis. Hepatology 1992; 16(4): 1014-21.
Angulo P, Patel T, Jorgensen RA, Therneau TM, Lindor KD. Silymarin in the treatment of patients with primary biliary cirrhosis with a suboptimal response to ursodeoxycholic acid. Hepatology 2000; 32(5): 897-900.
Yoshikawa M, Ninomiya K, Shimoda H, Nishida N, Matsuda H. Hepatoprotective and antioxidative properties of salacia reticulata: Preventive effects of phenolic constituents on CCl 4-induced liver injury in mice. Biol Pharm Bull 2002; 25(1): 72-6.
Mei-Zi G, Xiao-Sheng L, Hai-Rong X, Zhe-Chuan M, Wei S, Xiu-Feng Y. Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats. Acta Pharmacol Sin 2002; 23(8): 739-44.
Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, de Mejia E, Lila MA. Characterization of polyphenolics in the seed coat of black jamapa bean (phaseolus vulgaris L.). J Agric Food Chem 2005; 53(11): 4615-22.
Vrba J, Modriansky M. Oxidative burst of kupffer cells: Target for liver injury treatment. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2002; 146(2): 15-20.
Salinas-Moreno Y, Rojas-Herrera L, Sosa-Montes E, Pérez-Herrera P. Composición de antocianinas en variedades de frijol negro (Phaseolus vulgaris L.) cultivadas en México. Anthocyanin composition in black bean (Phaseolus vulgaris L.) varieties grown in Mexico. Agrociencia 2005; 39: 385-394.
Said HM, En-Nia A, Mertens P, Gressner AM, Dooley S. YB-1 mediates IFN-ã dependent regulation of TGF-â responsive genes, thereby providing antifibrotic effects. Z Gastroenterol 2004: 42.
Chen A. Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem J 2002; 368(Pt 3): 683-93.
Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Biochem 2002; 234-235(1-2): 49-62.