2007, Number 4
<< Back Next >>
Vet Mex 2007; 38 (4)
Protective effect of thiamine pyrophosphate in the hippocampus of rats exposed to stress by forced immobilization
Sicilia AG, Martínez ÁMA, Valenzuela PA, González ZMA, Granados RL, Barragán MMG
Language: English/Spanish
References: 37
Page: 429-438
PDF size: 310.47 Kb.
ABSTRACT
The ability of thiamine pyrophosphate (TPP) or activated vitamin B
1 in preventing neuronal damage to the rat hippocampus exposed to stress by forced immobilization was appraisable on this study. Twenty one days old, male rats were used and distributed on four groups of ten rats each: control (C), chronic stress (CS), chronic stress + TPP (CS + TPP), and TPP (TPP). The analyzed variables were: body weight, dendritic apical length, major and minor neuronal soma axes, as well as the average of dendritic branches and spines. The results showed significant decreases on body weight (from 20 to 40%) in all groups when comparing with C group, and a statistically significant decrease at serum corticosterone levels of 20.52% in TPP and 16.3% in CS + TPP groups when comparing with C group. A significant increase was found (6.5%) on diameter of minor neuronal soma axis in CS + TPP group compared to C group. Other statistically significant decreases were: dendritic length of 32.1% in CS group compared to C, 27.2% in CS group in relation to CS + TPP and 30.2% in CS group compared to only TPP supplied group. Finally, the number of dendritic spines showed statistically significant decrease of 59.4% in relation to CS group, 50.8% in CS group compared to CS + TPP groups, and 57.7% in group CS compared to TPP supplied group. According to these results, TPP acts preventing the increase of serum corticosterone levels in stressed rats supplied with TPP which preserves neuronal integrity on the analyzed variables, such as dendritic length and dendritic spines average.
REFERENCES
a century of stress research a tribute to Hans Selye by his students and associates. Experientia 1985, 41: 523-534.
Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E, Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 2005;53:129-39.
Paskitti M E, McCreary BJ, Herman JP. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Mol Brain Res 2000;80:142-152.
Reznikov AG, Nosenko ND. Early postnatal changes in sexual dimorphism of catecholamine and indoleamine content in the brain of prenatally stressed rats. Neuroscience 1996;70: 547-551.
Dayas CV, Buller KM, Day TA. Hypotalamic paraventricular nucleus neurons regulate medullary catecholamine cell responses to restraint stress. J Comp Neurol 2004;478:22-34.
Gilad GM, Mahon BD, Finkelstein Y, Koffl er B, Gilad VH. Stress-induced activation of the hippocampal cholinergic system and the pituitary- adrenocortical axis. Brain Res 1985;347:404-408.
Fuchs E, Flügge G, Ohl F, Lucassen P, Vollmann-Honsdorf GK, Michaelis T. Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus. Physiol Behav 2001;73:285-291.
Sandi C. The role and mechanisms of action of glucocorticoid involvement in memory storage. Neural Plast 1998;6:41-52.
de Quervain Dominique JF, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of longterm spatial memory. Nature 1998;394:787-790.
Yang Y, Zheng X, Wang Y, Cao J, Dong Z, Cai J et al. Stress enables synaptic depression in CA1 synapses by acute and chronic morphine: posible mechanisms for corticosterona on opiate addiction. J Neurosci 2004; 24(10):1-24.
Donohue HS, Gabbott PL, Davies HA, Rodriguez JJ, Cordero MI, Sandi C et al. Chronic restraint stress induces changes in synapses morphology in stratus lacunosum-moleculare CA1 rat hippocampus: a stereological and tree-dimensional ultrastructural study. Neuroscience 2006;140:597-606.
Wellman CL. Dendritic reorganization pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 2001; 49:245-253.
Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000;97:253-266.
Shors TJ, Gallegos RA, Breindl A. Transient and consequences of acute stress on long-term potentiation (LTP), synaptica efficacy, theta rhythms and bursts in area CA1 of the hippocampus. Synapse 1997;26:209-217.
Yau JL, Kelly PA, Seckl JR. Increased glucocorticoid receptor gene expression in the rat hippocampus following combined serotoninergic and medial septal cholinergic lesions. Mol Brain Res 1994; 27:174-178.
Mckittrick CR, Magariños AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR. Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 2000;36:85-94.
Bianchi M, Heidbreder C, Crespi F, Cytoskeletal changes in the hippocampus following restraint stresss: role of serotonin and microtubules. Synapse 2003;49:188-194.
Bharagava A, Mathias SR, McCormick AJ, Dallman FM, Pearce D. Glucocorticoids prolong Ca2+ transients in hippocampal-derived H 19-7 neurons by Ca2+ - ATPas-1. Mol Endocrinol 2002; 16: 1629- 1637.
Mameczarz J, Budziszewska B, Antkiewiez-Michaluk L, Vetulani J. The Ca2+ channel blockade changes the behavioral and biochemical effecs of immobilization stress. Neurophysiology 1999;20(3):248-254.
Krugers HJ, Goltein PM, van der Linden S, Joels M. Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic after exposure to chronic stress. Eur J Neurosci 2006;23:3051-3055.
Conrad CHD. What is the functional significance of chronic stress dendritic retraction within the hippocampus? Behav Cogn Neurosci Rev 2006; 5: 41-60.
Filipovic D, Gavrilovic L, Dronjak S, Radojcic MB, Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress. Neuropsychobiology 2005;51:107-114.
Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992;588:341-345.
Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdale. Neuroscience 2005:26:9371-9387.
Pawlak R, Rao S, Melchor JP, Chattarji S, McEwen B, Strickland S. Tissue plasmiogen activator and plasmiogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Neuroscience 2005; 102:18201-18217.
Sicilia-Argumedo G, Valenzuela-Peraza A, Granados-Rojas L, Serrano-García N, Coballase-Urrutia E, Díaz-Cintra S. Disminución del número de espinas dendríticas en las neuronas piramidales de la corteza motora de ratas bajo estrés prenatal. Arch Neuroci 2000;5:6-11.
Granados RL, Sicilia AG, Martínez AMA, Pérez TE, Valenzuela PA, Serrano GN et al. Densidad de espinas dendríticas en neuronas piramidales de la corteza visual de ratas bajo estrés prenatal. Arch Neuroci 1998;3:128-134.
Bettendorff L, Mastrogiacomo F, Wins P, Kish SJ, Grisar T, Ball MJ. Low thiamine levels in brains of patients with frontal lobe degeneration on the non Alzheimer´s type. J Neurochem 1997;69:2005-2010.
Gibson GE, Zhang H. Interaction of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 2002;40: 493-504.
Singleton CK, Martin PR. Molecular Mecanims of thiamine utilization. Curr Mol Med 2001; 1:197-207.
Harper C. Thiamine (vitamin B1) deficiency and associated brain damage is still common throughout the world and prevention is simple and safe. Eur J Neurol 2006; 13:1078-82.
Ba A, N´Douba V, D´Almeida MA, Seri BV. Effects of maternal thiamine deficiencies on the pyramidal and granule cells of the hippocampus of rat pups. Acta Neurobiol Exp (Wars) 2005; 65:387-398.
Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación, 22 de agosto 2001.
Benítez Rodríguez MT. Aplicación terapéutica del pirofosfato de tiamina o cocarboxilasa. México (D.F). Información Profesional Especializada, SA de CV, 1996.
Gabbott PL, Somogyi JS. The “single” section Golgiimpregnation procedure: methodological description. J Neur Meths 1984; 11:221-230.
Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953; 87:387-496.
Kotelevtsev Y, Holmes MC, Burchell MC, Houston S, Jamieson P. 11β- Hidroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inductible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci 1997; 94: 14924-14929.