2008, Number 1
Next >>
Med Sur 2008; 15 (1)
Coronary artery flow, myocardial dysfunction and sepsis
González-Chon O, García-López S, Arias-Sánchez EA, Arriaga-Gracia J
Language: Spanish
References: 40
Page: 3-10
PDF size: 120.75 Kb.
ABSTRACT
Septic shock is a high cardiac output entity with high oxygen demand and reduced systemic vascular resistance and oxygen supply, secondary to a loss in autoregulation and non homogeneous capillary blood flow. Clinical Studies have suggested that inadequate coronary blood flow plays an important role in cardiac dysfunction related to sepsis. Sepsis has been associated with a diminished global myocardial perfusion that results in ischemic damage and cardiac dysfunction. Hemodynamic pattern in septic patients is characterized by a low systolic volume despite a high cardiac output. Infection induces a great number of inflammatory mediators that amplify septic response and therefore contribute to myocardial dysfunction. Nitric oxide production contributes to this process by the production of cGMP. Nowadays is of primary importance to run clinical assays to better understand myocardial dysfunction in the septic patient as to understand if cardiac dysfunction is a protective process and the therapeutic approach of this disease.
REFERENCES
Kassab GS, Lin DH, Fung YB. Morphometry of pigs coronary arterial trees. Am J Physiol 1993; 265: 350-365.
Kassab GS, Lin DH, Fung YB. Morphometry of pigs coronary venopus system. Am J Physiol 1994; 267: H2100-2113.
Kassab GS, Lin DH, Fung YB. Topology and dimensions of pigs coronary capillary network. Am J Physiol 1994; 267: 319-325.
Klocke FJ. Coronary blood flow in man. Prog Cardiovas Dis 1976; 29: 117-165.
Hoffman JIE. Transmural myocardial perfusion. Prog Cardiovasc Dis 1977; 29: 429-464.
Hoffman JIE. Heterogeneity of myocardial blood flow. Basic Res Cardiol 1995; 90: 103-111.
Yada T, Hiramatsu O, Kimura A, Goto M, Ogasaeara Y, TsujokaK, Yamamori S, Ohno K, Osaka H, Kjiya F. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CDD camera. Circ Res 1993; 72: 939-946.
González F, Bassingthwaigghte JB. Heterogeneites in regional volumes of distribution and flows in the rabbit heart. Am J Physiol 1990; 258: 1012-1024.
Austin REJr, Aldea GS, Coggins DL, Flynn AE, Haoffman JIE. Profound spatial heterogeneity of coronary reserve: discordance between patterns of resting and maximal myocardial blood flow. Circ Res 1990; 67: 319-331.
Caldwell JH, Martín GV, Raymond GM, Bassingthwaigghte JB. Regional myocardial flow and capillary permeability: surface area products are nearly proportional. Am J Physiol 1994; 90; 103-111.
Kanatsuka H, Camping KG, Eastham CL, Dellaperger KC, Marcus ML. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ Res 1989; 65: 1296-1305.
Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 1988; 255: 1558-1562.
Kuo L, Davis MJ, Chilian WM. Endothelium-dependent flow induced dilatation of isolated coronary arterioles. Am J Physiol 1990; 259: 1063-1070.
Kuo L, Davis MJ, Chilian WM. Interaction of pressure-and-flow-induced responses in porcine resistance vessels. Am J Physiol 1991; 261: 1706-1715.
Kuo L, Arko F, Chilian WM, Davis MJ. Coronary venular responses to flow and pressure. Circ Res 1993; 72: 607-615.
Kuo L, Davies MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and independent vascular responses in the coronary circulation. Circulation 1995; 92: 518-525.
Kuo L, Davies MJ, Chilian WM. Endothelial modulation of arteriolar tone. Nwes Physiol Sci 1992; 7: 5-9.
Xia J, Little TL, Duling BR. Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am J Physiol 1995; 269: 2020-2038.
Yuan Y, Granger HJ, Zawieja DC, De Fily DV, Chilian WM. Flow modulates coronary venular permeability by a nitric oxide-related mechanisms. Am J Physiol 1992; 263: 641-646.
Anguns DC, Linde-Zwirbe WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit Care Med 2001; 29: 1303-1310.
Dhanaut JF, Marin N Cariou A. Circulación coronaria en sepsis. En: Función cardiovascular en el paciente grave. Castel AN. Masson 2005. Barcelona España IBSN 84-458-1269-6. pp 41-47.
Krausz MM, Perel A, Eimerl D, Cotev S. Cardiopulmonary effects of volume loading in patients with septic shock. Ann Surg 1977; 185: 429-434.
Parker SM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and non-survivors of human septic shock: heart rate as en early predictor of prognosis. Crit Care Med 1987; 15: 923-929.
Weisel RD, Vito L, Dennos RC, Hechtman HB. Myocardial depression during sepsis. Am J Surg 1977; 133: 512-521.
Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483-490.
Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 1988; 93: 903-910.
Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 1998; 26: 1829-1833.
Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 1997; 23: 553-560.
Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation 1986; 73: 4;637-644.
Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Ava-Santucci JD, Brunet F, Villemant D, Carli A, Raichvarg. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose and ketones in patients with septic shock. Circulation 1987; 75(3): 533-541.
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Scheim RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for use of innovative therapies in sepsis. Chest 1992; 101: 1664-1665.
Court O, Kumar A, Parrillo JE, Kumar A. Clinical Review: Myocardial depression in sepsis and septic shock. Critical Cares 2002: 6: 500-508.
Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 1985; 76: 1539-1553.
Eichenholz PW, Eichacker PQ, Hoffman WD, Banks SM, Parrillo JE, Danner RL, Natanson C. Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction. Am J Physiol 1992; 263: H668-H675.
Gu M, Bose R, Bose D, Yang J, Li X, Light RB, Mink S. Tumor necrosis factor-alpha but not septic plasma depresses cardiac myofilament contraction. Can J Anesth 1998; 45: 280-286.
Vincent JL, Bakker J, Marecaux G, Schandene L, Kahan RJ, Dupont E. Administration of anti-TNF antibody improves left ventricular function in septic shock patients: results of a pilot study. Chest 1992; 101: 810-815.
Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor-alpha and interleukin 1 beta-1 are responsible for depression of in vitro myocardial cell contractility induced by serum from humans with septic shock. J Exp Med 1996; 183: 949-958.
Sibelius U, Grandel U, Buerke M, Kiss L, Klingerberger P, Heep M. Leukotriene mediated coronary vasoconstriction and loss of myocardial contractility evoked by low doses of Escherichia coli hemolisyn in perfused rat hearts. Crit Care Med 2003; 31: 683-688.
Spies C, Haude V, Fitzner R. Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 1998; 113(4): 1055-1063.
Richard L, Piel D. Evidence of myocardial hibernation in the septic heart. Crit Care Med 33(12): 2752-2757.