2008, Number 1
<< Back Next >>
Arch Cardiol Mex 2008; 78 (1)
A method designed for the assessment of myocardial metabolism in rats with 18F-FDG using small-animal-PET. Initial experience in México
Alexánderson RE, Ortega LN, Ojeda FR, Mendoza VG, Adame OG, Meave GA, Saldaña DY, Lamothe MPA, Rodríguez VM, García RCL, Narro RJ
Language: Spanish
References: 33
Page: 11-18
PDF size: 208.33 Kb.
ABSTRACT
Purpouse: To standarize an acquisition protocol for the study of myocardial metabolism in adult rats.
Material and methods: Three Wistar adult male rats were studied in three different protocols: no fasting group, fasting group over a period of 12 hr before the study with only water provided ad libitum, and fasting group by the same time receiving an oral 50% glucose solution. Thirty-minute acquisition images were obtained with a micro-PET, thirty and sixty minutes after the administration of 370 - 555 MBq 18F-FDG. Comparative and visual analysis were performed by two experts in the field.
Results: Eigtheen studies were analyzed, six per group. The best images were those of the fist group, especially those taken at 60 minutes after the 18F-FDG administration.
Conclusion: It is possible to establish the non-fasting protocol for the assessment of myocardial metabolism to be used in the future for the myocardial viability evaluation in ischemic cardiopathy.
REFERENCES
World Health Organization. Página Web disponible en: http://www.who.int/cardiovascular_diseases/prevention_control/en/
Instituto Nacional de Estadística, Geografía e Informática. Página Web disponible en: http://www.inegi.gob.mx/est/default.aspx?c=2346
Lefebvre C, Chênevert A, Bordeleau E, Ugolini P, Ouellet R, Sablayrolles J, et a: Coronary computed tomography angiography: overview of technical aspects, current concepts, and perspectives. Can Assoc Radiol J 2007; 58: 92-108.
Lombardo A, Rizzello V, Galiuto L, Natale L, Giordano A, Rebuzzi A, et al: Assessment of resting perfusion defects in patients with acute myocardial infarction: comparison of myocardial contrast echocardiography, combined first-pass/delayed contrast-enhanced magnetic resonance imaging and 99mTC-sestamibi SPECT. Int J Cardiovasc Imaging 2006; 22: 417-28.
Klein L, van Campen L, Sieswerda G, Kamp O, Visser C, Visser F: Glucose-insulin-potassium echocardiography detects improved segmental myocardial function and viable tissue shortly after acute myocardial infarction. J Am Soc Echocardiogr 2006; 19: 763-71.
Ropers D: Multislice computer tomography for detection of coronary artery disease. J Interv Cardiol 2006; 19: 574-82.
Nikolaou K, Flohr T, Knez A, Rist C, Wintersperger B, Johnson T, et al: Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging. 2004; 20: 535-40.
Beanlands R, Dekemp R, Scheffel A, Nahmias C, Garnett S, Coates G: Can Nitrogen-13 Ammonia Kinetic Modeling Define Myocardial Viability Independent of Fluorine-18 Fluorodeoxyglucose? J Am Coll Cardiol 1997; 29: 537-43.
Slart R, Bax J, de Boer J, Willemsen A, Mook P, Oudkerk M, et al: Comparison of 99mTc-sestamibi/18FDG DISA SPECT with PET for the detection of viability in patients with coronary artery disease and left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2005; 32: 972-9.
Roelants V, Bernard X, Walrand S, Bol A, Coppens A, Jamart J, el al: Attenuation-corrected 99mTc-MIBI SPECT in overweight patients with chronic ischaemic dysfunction: a comparison to NH3 PET and implications for the diagnosis of myocardial viability. Nucl Med Commun 2006; 27: 815-21.
Meave A, Ricalde A, Sierra C F, García L, Alexánderson E: Estudio de la viabilidad miocárdica: Comparación de tomografía por emisión de positrones y resonancia magnética. Arch Cardiol Mex 2005; 75: 71-78.
Brodoefel H, Reimann A, Klumpp B, Fenchel M, Ohmer M, Miller S, et al: Assessment of myocardial viability in a reperfused porcine model: evaluation of different MSCT contrast protocols in acute and subacute infarct stages in comparison with MRI. J Comput Assist Tomogr 2007; 31: 290-8.
Goldfarb J, Arnold S, Roth M, Han J: T1-weighted magnetic resonance imaging shows fatty deposition after myocardial infarction. Magn Reson Med 2007; 57: 828-34.
Surányi P, Kiss P, Brott B, Simor T, Elgavish A, Ruzsics B, et al: Percent infarct mapping: an R1-map-based CE-MRI method for determining myocardial viability distribution. Magn Reson Med 2006; 56: 535-45.
Maki M, Haaparanta M, Nuutila P, Oikonen V, Luotolahti M, Eskola o, et al: Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18 fluoro-6-thia-heptadecanoic acid. J Nucl Med 1998; 39: 320-7.
Visser F: Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate. Coron Artery Dis 2001; 12: S12-8.
Alexanderson E, Gómez M, Benito I, Ruiz R, Ricalde A, Meave A: Tomografía por emisión de positrones (PET): Una herramienta útil para el estudio del metabolismo cardíaco. Arch Cardiol Mex 2004; 74: 220-28.
Schelbert H, Beanlands R, Bengel F, Knuuti J, Di Carli M, Machac J, et al: Pet myocardial perfusion and glucose metabolism imaging: part 2-guidelines for interpretation and reporting. J Nucl Cardiol 2003; 10: 557-71.
Alexánderson E: Utilidad de las técnicas nucleares en el estudio de la viabilidad miocárdica. Arch Cardiol Mex 2004; 74: 8-12.
Strauss HW, Grewal RK, Taskar NP: Molecular Imaging in Nuclear Cardiology. Semin Nucl Med 2004; 34: 47-55.
Meoli D, Sadeghi M, Krassilnikova S, Bourke B, Giordano F, Dione D, et al: Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004; 113: 1684-91.
Sokolova RI, Zhdanov VS: Hibernation and stunning as manifestations of ischemic dysfunction of the myocardium. Arkh Patol 2002; 64: 50-4.
Wu J, Inubushi M, Sundaresan G, Schelbert H, Gambhir S: Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 2002; 106: 180-3.
Inubushi M, Wu J, Gambhir S, Sundaresan G, Satyamurthy N, Namavari M et al: Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003; 107: 326-32.
Kudo T, Annata A, Cherry S, Phelps M, Schelbert H: Measurement of myocardial blood flow during occlusion/reperfusion in rats with dynamic microPET imaging. J Nucl Med 1998; 39: 9P.
Lapointe D, Bentourkia M, Cadorette J, Rodrigue S, Ouellet R, Bernard F, et al: High-resolution cardiac PET in rats. J Nucl Med 1999; 40: 185P.
Kreissl M, Wu H, Stout D, Ladno W, Schindler T, Zhang X, et al: Noninvasive measurement of cardiovascular function in mice with high-temporal-resolution small-animal PET. J Nucl Med 2006; 47: 974-80.
microPET__Siemens Focus 120 and 220. Siemens Medical Solutions USA, Inc. 2005.
Fueger B, Czernin J, Hildebrandt I, Tran C, Halpern B, Stout D, et al: Impact of Animal Handling on the Results of 18F-FDG PET Studies in Mice. J Nucl Med 2006; 47: 999-1006.
Gould K, Schelbert H, Phelps M, Hoffman E: Non invasive assesment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. Am J Cardiol 1979; 43: 200-208.
Sochor H, Pachinger O, Orgis E, Probst P, Kaindl F: Radionuclide imaging alter coronary vasodilatation: myocardial scintigraphy with thallium-201 and radionuclide angiography alter administration of dipyridamole. Eur Heart J 1984; 5: 500-9.
Santalucia T, Camps M, Castello A, Munoz P, Nuel A, Testar X, et al: Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 1992; 130: 837-46.
Baxx J, Veening M, Visser F, van Lingen A, Heine R, Cornel L, et al: Optimal metabolic conditions during Fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997; 24: 35-41.