1999, Number 4
<< Back Next >>
Vet Mex 1999; 30 (4)
Distribution of mast cells in mammary gland stroma, during the active and inactive periods in the bitch (Canis familiaris)
Villaseñor GH, Emilia LR, Anzaldúa ASR, Pérez MM
Language: English/Spanish
References: 40
Page: 317-321
PDF size: 86.75 Kb.
ABSTRACT
Morphologic characteristics of stroma and parenchima depend of the functional level in the mammary gland. Mast cells (MC) are dynamic elements present in connective tissues, which can induce degranulation of biologically active mediators which the interaction with other connective cells. The objective of this study was to find out the number and pattern of distribution and possible differences in mast cell population present in the mammary gland (MG) of bitches under two physiologic conditions: active or inactive. Forty adult bitches from the Antirrabic Health Center were sacrificed and sampled. Fragments from abdominal, cranial and caudal mammary gland were collected, processed and included in paraffin wax, cut in thin 6 µm sections and stained with hematoxiline-eosine and tolouidine blue. The total number of MC was counted in 16 selected fields at random to estimate the mm
2 population from both interalveolar and interlobulillar stroma. Statistical analysis showed significant differences (P‹0.05) between the interalveolar (R1) and interlobulillar regions (R2) from inactive MG. Differences were found in MC and between inactive MG and R1 and R2 from active MG. During the active period the number of MC were significantly decreased in relation to that one during the inactive period; this suggests that MC play a relevant role in proliferative changes and growth from interalveolar connective cells of the inactive MG. In this period, the connective tissue includes all the space from the glandular epithelium present in the active period.
REFERENCES
Frandson DR. Anatomía y fisiología de los animales domésticos. México (DF): Interamericana-McGraw-Hill, 1988.
Dukes HH, Swenson MJ. Fisiología de los animales domésticos. Madrid, España: Aguilar, 1977.
Dellman HD, Brown ME. His tología veterinaria. Zaragoza, España: Acribia, 1980.
Banks JW. Histología veterinaria aplicada. México (DF): Manual Moderno, 1986.
World Association of Veterinary Anatomists. Nómina anatómica e histológica. 4a ed. Zurich, Switzerland: International Committee on Veterinary Gross Anatomical Nomenclature, 1992.
Park YH, Fox LK, Hamilton MJ, Davis WC. Bovine mononuclear leucocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J Dairy Sci 1992;75:998-1006.
Harveit F. Mast cell association with collagen fibres in human breast stroma. Eur J Morphol 1993;31:209-218.
Austin CR, Short RV. Hormonas en la reproducción. México (DF): Manual Moderno, 1980.
Aceves VC, Valverde RC. Lactación, homeorresis y hormonas tiroideas. Vet Méx 1987;18:215-228.
Guyton AC. Tratado de fisiología médica. México (DF): Interamericana-McGraw-Hill, 1988
Homo-Delarche F, Dardenne M. The neuroendocrine immune axis. Immunopathology 1993;14:221-238.
Kitamura Y. Heterogenety of mast cells and phenotypic change between subpopulations. Ann Rev Immunol 1989;7:59-76.
Jones RE, Duvall D, Guillette LJ. Rat ovarian mast cells: distribution and cyclic changes . Anat Rec 1980;197:489-493.
Brandon JM, Evans JE. Observations on uterine mast cells during early pregnancy in the vole, Microtus agrestis . Anat Rec 1984;208:515-520.
Newlands GF, Huntley JF, Miller HR. Concommitant detection of mucosal mast cells and eosinophils in the intestines of normal and Nippostrongylus-immuno rats. Histochemistry 1984;81:585-589.
Woodbury RG, Miller HR, Huntley JF, Newlands GF, Pallisert AC, Wakelin D. Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature1984;312:450-452.
Anzaldúa AS. La biología de la célula cebada. Estudio recapitulativo (tesis de licenciatura). México (DF) México: Facultad de Medicina Veterinaria y Zootecnia.UNAM, 1985.
Ashraf M, Urban JF, Lee TD, Lee CM. Characterization of isolated porcine intes tinal mucosal mast cells following infection with Ascaris suum. Vet Parasitol 1988;29:143-158.
Parshad RK, Kathpalia K. Distribution and characteristics of mast cells in the rat ovary during the oestrus cycle, lactation and pregnancy. Folia Morphol (Praha) 1990;38:327-330.
Gaytan F, Aceitero J, Bellido C, Sánchez-Criado JE, Aguilar E. Estrous cycle-related changes in mast cell numbers in several ovarian compartments in the rat. Biol Reprod 1991;45:27-33.
Lavielle RE, De Buen N, Candanosa E, Pére z MM, Martínez MJ. Conteo de mastocitos en glándula mamaria canina con diferentes tipos de neoplasias. Acta Médica 1994;30:117-118.
McKay DM, Bienenstock J. The interaction between mast cells and nerves in the gastrointestinal tract. Immunol Today 1994;15:533-538.
Abbas AK, Lichtman AH, Pober JS. Inmunología celular y molecular. 2a ed. México (DF): Interamericana-McGraw-Hill, 1995.
Castella MA. Cytokines produced by polymorphonuclear neutrophils: molecular and biological aspects . New York: Landes Company, 1996.
Wedmore CV, Williams TJ. Control of vascular permeability by polymorphonuclear leukocytes in inflamation. Nature 1981;289:646-650.
Heyworth MF, Jones AL. Immunology of the gastrointestinal tract and liver. New York: Ravin Press, 1988.
Huntley JF. Mast cells and basophils: a review of their meterogeneity and function. J Comp Pathol 1992;107:349-372.
Galli SJ. New concepts about the mast cell. New Eng J Med 1993;328:257-265.
Greenberg G, Burnstock G. A novel cell to cell interaction between mast cells and other cell types . Exp Cell Res 1983;147:1-13.
García DD. Distribución y variación del número de mastocitos en la glándula mamaria en regresión en la rata (tesis de licenciatura). México (DF) México: Facultad de Medicina Veterinaria y Zootecnia. UNAM, 1983.
Becker AB, Fan Chung K, McDonald D, Lazarus S, Frick OL, Gola WM. Mast cells meterogeity in dog. Skin Anat Rec 1985;213:477-480.
Lee CS, Mensn EL, Brandon MR. Subpopulations of lymphocytes in the mammary gland of sheep. Immunology 1989;66:388-393.
Crow J, Wilkins M, Howes M, Helliwel P. Mast cells in the female genital tract. Int J Gynecol Pathol 1991;10:230-237.
Galli SJ, Gordon JR, Wershil BK. Citokine production by mast cells and basophils. Curr Opin Immunol 1991;3:865-873.
Brown SJ, Galli SJ, Gleich GJ, Askenase PW. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in Guinea pig. J Immunol 1982;129:790-796.
Du Bois JA, Wordinger RJ, Dickey JF. Mast cells and lymphocyte variations in bovine oviduct. J Anim Sci 1976;42:1578.
Lozano CB, Tolosa SJ. Cuantificación de células cebadas y de los eosinófilos en la mucosa del cuello uterino del ganado Cebú en diferentes etapas reproductivas. Vet Méx 1989;20:393-395.
Schefler WC. Bioestadística. México (DF) Fondo Educativo Interamericano, 1981.
García-Pascual A, Labadía A, Triguero D, Costa G. Local regulation of oviductal blood flow. Gen Pharmacol 1996;27:1303-1310.
Gordon JR, Galli SJ. Mast cells as source of both preformed and immunologically inducible TNF-a/cachectin. Nature 1990;346:274-276.