2008, Number 1
<< Back Next >>
Ann Hepatol 2008; 7 (1)
Oxidative stress: A radical way to stop making bile
Roma MG; Sanchez PEJ
Language: English
References: 224
Page: 16-33
PDF size: 155.27 Kb.
ABSTRACT
Oxidative stress is a common feature in most hepatopathies. In recent years, evidence has accumulated that reactive oxygen species (ROS) induce a number of functional changes either deleterious or adaptive in the capability of the hepatocytes to produce bile and to secrete exogenous and endogenous compounds. This review is aimed to describe the mechanisms involved in these alterations. For this purpose, we will summarize:
1) The current evidence that acutely-induced oxidative stress is cholestatic, by describing the mechanisms underlying the hepatocyte secretory failure, including the disorganization of the actin cytoskeleton and its most noticeable consequences, the impairment of tight-junctional structures and the endocytic internalization of canalicular transporters relevant to bile formation.
2) The role for oxidative-stress-activated signalling pathways in the pathomechanisms described above, particularly those involving Ca2+ elevation and its consequent activation of Ca2+-dependent PKC isoforms.
3) The mechanisms involved in the adaptive response against oxidative stress mediated by ROS-responsive transcription factors, involving up-regulation of GSH-synthesizing enzymes, GSH-detoxifying enzymes and the hepatocellular efflux pumps; this response enhances the co-coordinated inactivation by GSH conjugation of lipid peroxides and their further cellular extrusion.
4) The manner this adaptive response can be surpassed by the sustained production of ROS, thus inducing transcriptional and posttranscriptional changes in transporters relevant to bile formation, as has been shown to occur, for example, after long-term administration of aluminum to rats, in the Long-Evans Cinnamon rat (a model of chronic hepatic copper accumulation mimicking Wilson’s disease), and in ischemia-reperfusion injury.
REFERENCES
Nohl H, Gille L, Kozlov A, Staniek K. Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep 2003; 8: 135-41.
Cross AR, Jones OT. Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1991; 1057: 281-98.
Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology 2006; 43 Suppl 1: S63-74.
Kim KB, Lee BM. Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene. Cancer Lett 1997; 113: 205-12.
Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 1999; 31: 261-72.
Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272: 20313-6.
Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 2002; 33: 37-44.
Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R. The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 2001; 31: 1624-32.
Bellomo G, Mirabelli F. Oxidative stress and cytoskeletal alterations. Ann N Y Acad Sci 1992; 663: 97-109.
Gores GJ, Herman B, Lemasters JJ. Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury. Hepatology 1990; 11: 690-8.
Vercesi AE, Kowaltowski AJ, Oliveira HC, Castilho RF. Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias. Front Biosci 2006; 11: 2554-64.
Sawada M, Sester U, Carlson JC. Superoxide radical formation and associated biochemical alterations in the plasma membrane of brain, heart, and liver during the lifetime of the rat. J Cell Biochem 1992; 48: 296-304.
Konat GW. H2O2-induced higher order chromatin degradation: a novel mechanism of oxidative genotoxicity. J Biosci 2003; 28: 57-60.
Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 2001; 8: 773-96.
Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38: 713-21.
Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol 2004; 3: 86-92.
Poli G. Liver damage due to free radicals. Br Med Bull 1993; 49: 604-20.
Kaplowitz N, Tsukamoto H. Oxidative stress and liver disease. Prog Liver Dis 1996; 14: 131-59.
Medina J, Moreno-Otero R. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 2005; 65: 2445-61.
Galaris D, Barbouti A, Korantzopoulos P. Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Cur Pharm Des 2006; 12: 2875-90.
Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 1997; 37: 327-38.
Vendemiale G, Grattagliano I, Lupo L, Memeo V, Altomare E. Hepatic oxidative alterations in patients with extra-hepatic cholestasis. Effect of surgical drainage. J Hepatol 2002; 37: 601-5.
Sokol RJ, Devereaux M, Dahl R, Gumpricht E. «Let there be bile»—understanding hepatic injury in cholestasis. J Pediatr Gastroenterol Nutr 2006; 43 Suppl 1: S4-9.
Harada K, Nakanuma Y. Molecular mechanisms of cholangiopathy in primary biliary cirrhosis. Med Mol Morphol 2006; 39: 55-61.
Salunga TL, Cui ZG, Shimoda S, Zheng HC, Nomoto K, Kondo T, et al. Oxidative stress-induced apoptosis of bile duct cells in primary biliary cirrhosis. J Autoimmun 2007; 29: 78-86.
Aboutwerat A, Pemberton PW, Smith A, Burrows PC, McMahon RF, Jain SK, et al. Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim Biophys Acta 2003; 1637: 142-50.
Salem TA, El-Refaei MF, Badra GA. Study of antioxidant enzymes level and phagocytic activity in chronic liver disease patients. Egypt J Immunol 2003; 10: 37-45.
Sakaguchi S, Furusawa S. Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. FEMS Immunol Med Microbiol 2006; 47: 167-77.
Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol 2006; 290: G847-51.
Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med 2003; 34: 1-10.
Stehbens WE. Oxidative stress, toxic hepatitis, and antioxidants with particular emphasis on zinc. Exp Mol Pathol 2003; 75: 265-76.
Pemberton PW, Aboutwerat A, Smith A, Burrows PC, McMahon RF, Warnes TW. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta 2004; 1689: 182-9.
Fernandez-Checa JC. Alcohol-induced liver disease: when fat and oxidative stress meet. Ann Hepatol 2003; 2: 69-75.
Gawrieh S, Opara EC, Koch TR. Oxidative stress in nonalcoholic fatty liver disease: pathogenesis and antioxidant therapies. J Investig Med 2004; 52: 506-14.
Patrick L. Nonalcoholic fatty liver disease: relationship to insulin sensitivity and oxidative stress. Treatment approaches using vitamin E, magnesium, and betaine. Altern Med Rev 2002; 7: 276-91.
Albano E, Mottaran E, Occhino G, Reale E, Vidali M. Review article: role of oxidative stress in the progression of non-alcoholic steatosis. Aliment Pharmacol Ther 2005; 22 Suppl 2: 71-3.
Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol 2005; 202: 199-211.
Alla V, Bonkovsky HL. Iron in nonhemochromatotic liver disorders. Semin Liver Dis 2005; 25: 461-72.
Ferenci P. Pathophysiology and clinical features of Wilson disease. Metab Brain Dis 2004; 19: 229-39.
Nanji AA, Hiller-Sturmhofel S. Apoptosis and necrosis: two types of cell death in alcoholic liver disease. Alcohol Health Res World 1997; 21: 325-30.
Rosser BG, Gores GJ. Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 1995; 108: 252-75.
Czaja MJ. Induction and regulation of hepatocyte apoptosis by oxidative stress. Antioxid Redox Signal 2002; 4: 759-67.
Higuchi H, Kurose I, Kato S, Miura S, Ishii H. Ethanol-induced apoptosis and oxidative stress in hepatocytes. Alcohol Clin Exp Res 1996; 20: 340A-6A.
Cardin R, D’Errico A, Fiorentino M, Cecchetto A, Naccarato R, Farinati F. Hepatocyte proliferation and apoptosis in relation to oxidative damage in alcohol-related liver disease. Alcohol Alcohol 2002; 37: 43-8.
Anderson S, Nevins CL, Green LK, El-Zimaity H, Anand BS. Assessment of liver histology in chronic alcoholics with and without hepatitis C virus infection. Dig Dis Sci 2001; 46: 1393-8.
Marinelli RA, Gradilone SA, Carreras FI, Calamita G, Lehmann GL. Liver aquaporins: significance in canalicular and ductal bile formation. Ann Hepatol 2004; 3: 130-6.
Boyer JL. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev 1980; 60: 303-26.
Elsing C, Kassner A, Hubner C, Buhli H, Stremmel W. Absorptive and secretory mechanisms in biliary epithelial cells. J Hepatol 1996; 24 Suppl 1: 121-7.
Marinelli RA, LaRusso NF. Solute and water transport pathways in cholangiocytes. Semin Liver Dis 1996; 16: 221-9.
Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 1991; 88: 10629-33.
Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994; 93: 1326-31.
Bohan A, Boyer JL. Mechanisms of hepatic transport of drugs: implications for cholestatic drug reactions. Semin Liver Dis 2002; 22: 123-36.
Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 1998; 286: 1043-50.
Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis 2000; 20: 273-92.
Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 2003; 1609: 1-18.
Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43: 342-57.
Cui Y, Konig J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 2001; 276: 9626-30.
Kamisako T, Kobayashi Y, Takeuchi K, Ishihara T, Higuchi K, Tanaka Y, et al. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 2000; 35: 659-64.
Suchy FJ, Ananthanarayanan M. Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr 2006; 43 Suppl 1: S10-6.
Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2007; 453: 643-59.
Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid- independent bile flow. Am J Physiol 1989; 256: G22-30.
Ballatori N, Truong AT. Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol 1992; 263: G617-24.
Garcia-Ruiz C, Fernandez-Checa JC, Kaplowitz N. Bidirectional mechanism of plasma membrane transport of reduced glutathione in intact rat hepatocytes and membrane vesicles. J Biol Chem 1992; 267: 22256-64.
Ballatori N, Dutczak WJ. Identification and characterization of high and low affinity transport systems for reduced glutathione in liver cell canalicular membranes. J Biol Chem 1994; 269: 19731-7.
Yang B, Hill CE. Nifedipine modulation of biliary GSH and GSSG/conjugate efflux in normal and regenerating rat liver. Am J Physiol 2001; 281: G85-94.
Inoue M, Kinne R, Tran T, Arias IM. The mechanism of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat liver canalicular membrane vesicles. Eur J Biochem 1983; 134: 467-71.
Fernandez-Checa JC, Takikawa H, Horie T, Ookhtens M, Kaplowitz N. Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. J Biol Chem 1992; 267: 1667-73.
Bogert PT, LaRusso NF. Cholangiocyte biology. Curr Opin Gastroenterol 2007; 23: 299-305.
Xia X, Francis H, Glaser S, Alpini G, Lesage G. Bile acid interactions with cholangiocytes. World J Gastroenterol 2006; 12: 3553-63.
Ballatori N, Truong AT. Altered hepatic junctional permeability, bile acid excretion and glutathione efflux during oxidant challenge. J Pharmacol Exp Ther 1989; 251: 1069-75.
Schmitt M, Kubitz R, Wettstein M, vom Dahl S, Haussinger D. Retrieval of the mrp2 gene encoded conjugate export pump from the canalicular membrane contributes to cholestasis induced by tert-butyl hydroperoxide and chloro-dinitrobenzene. Biol Chem 2000; 381: 487-95.
Akerboom TP, Bilzer M, Sies H. Relation between glutathione redox changes and biliary excretion of taurocholate in perfused rat liver. J Biol Chem 1984; 259: 5838-43.
te Koppele JM, Keller BJ, Caldwell-Kenkel JC, Lemasters JJ, Thurman RG. Effect of hepatotoxic chemicals and hypoxia on hepatic nonparenchymal cells: impairment of phagocytosis by Kupffer cells and disruption of the endothelium in rat livers perfused with colloidal carbon. Toxicol Appl Pharmacol 1991; 110: 20-30.
Eipel C, Eisold M, Schuett H, Vollmar B. Inhibition of heme oxygenase-1 protects against tissue injury in carbon tetrachloride exposed livers. J Surg Res 2007; 139: 113-20.
Ji B, Ito K, Sekine S, Tajima A, Horie T. Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver. Free Radic Biol Med 2004; 37: 1718-29.
Barros SB, Videla LA, Simizu K, Van HL, Junqueira VB. Lindane-induced oxidative stress. II. Time course of changes in hepatic glutathione status. Xenobiotica 1988; 18: 1305-10.
Bramow S, Ott P, Thomsen NF, Bangert K, Tygstrup N, Dalhoff K. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol 2001; 89: 133-9.
Veggi LM, Crocenzi FA, Roma MG, Dawson PA, Pellegrino JM, Sanchez Pozzi EJ, et al. Dapsone-induced cholestasis and impairment of bile salt output in the rat. Biochem Pharmacol 2002; 63: 1553-63.
Veggi LM, Crocenzi FA, Roma MG, Mottino AD. Dapsone impairs the bile salt-independent fraction of bile flow in rats: Possible involvement of its N-hydroxylated metabolite. Toxicology 2005; 211: 97-106.
Hoener B, Noach A, Andrup M, Yen TS. Nitrofurantoin produces oxidative stress and loss of glutathione and protein thiols in the isolated perfused rat liver. Pharmacology 1989; 38: 363-73.
Hoener BA. Nitrofurazone: kinetics and oxidative stress in the singlepass isolated perfused rat liver. Biochem Pharmacol 1988; 37: 1629-36.
Settaf A, Zahidy M, Elimadi A, Sapena R, Alsamad IA, Tillement J, et al. S-15176 reduces the hepatic injury in rats subjected to experimental ischemia and reperfusion. Eur J Pharmacol 2000; 406: 281-92.
Koeppel TA, Trauner M, Mennone A, Arrese M, Rios-Velez L, Boyer JL. Role of glutathione in hepatic bile formation during reperfusion after cold ischemia of the rat liver. J Hepatol 1998; 28: 812-9.
Karwinski W, Soreide O. Allopurinol improves scavenging ability of the liver after ischemia/reperfusion injury. Liver 1997; 17: 139-43.
Bowers BA, Branum GD, Rotolo FS, Watters CR, Meyers WC. Bile flow-an index of ischemic injury. J Surg Res 1987; 42: 565-9.
Accatino L, Pizarro M, Solis N, Arrese M, Koenig CS. Bile secretory function after warm hepatic ischemia-reperfusion injury in the rat. Liver Transpl 2003; 9: 1199-210.
Lee SM, Park MJ, Cho TS, Clemens MG. Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock 2000; 13: 279-84.
Turnage RH, Bagnasco J, Berger J, Guice KS, Oldham KT, Hinshaw DB. Hepatocellular oxidant stress following intestinal ischemia-reperfusion injury. J Surg Res 1991; 51: 467-71.
Gonzalez MA, Alvarez ML, Pisani GB, Bernal CA, Roma MG, Carrillo MC. Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol Trace Elem Res 2007; 116: 329-48.
Gonzalez MA, Roma MG, Bernal CA, Alvarez ML, Carrillo MC. Biliary secretory function in rats chronically intoxicated with aluminum. Toxicol Sci 2004; 79: 189-95.
Lauterburg BH, Smith CV, Hughes H, Mitchell JR. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest 1984; 73: 124-33.
Akerboom T, Bultmann T, Sies H. Inhibition of biliary taurocholate excretion during menadione metabolism in perfused rat liver. Arch Biochem Biophys 1988; 263: 10-8.
Chenderovitch J, Raizman A, Infante R. Mechanism of ethacrynic acid-induced choleresis in the rat. Am J Physiol 1975; 229: 1180-7.
Singh R, Czaja MJ. Regulation of hepatocyte apoptosis by oxidative stress. J Gastroenterol Hepatol 2007; 22 Suppl 1: S45-8.
Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 2003; 304: 463-70.
Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 2003; 224: 29-55.
Griffiths JC, Sies H, Meier PJ, Akerboom TP. Inhibition of taurocholate efflux from rat hepatic canalicular membrane vesicles by glutathione disulfide. FEBS Lett 1987; 213: 34-8.
Pérez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Sanchez Pozzi EJ, et al. Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med 2006; 40: 2005-17.
Stone V, Coleman R, Chipman JK. Comparison of the effects of redox cycling and arylating quinones on hepatobiliary function and glutathione homeostasis in rat hepatocyte couplets. Toxicol Appl Pharmacol 1996; 138: 195-200.
Small JV, Rottner K, Kaverina I. Functional design in the actin cytoskeleton. Curr Opin Cell Biol 1999; 11: 54-60.
Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467-75.
Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA. Kinesin-and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol 1997; 138: 999-1008.
Kato Y, Watanabe C, Tsuji A. Regulation of drug transporters by PDZ adaptor proteins and nuclear receptors. Eur J Pharm Sci 2006; 27: 487-500.
Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J Biol Chem 2004; 279: 32761-70.
Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 2000; 97: 4017-22.
Mirabelli F, Salis A, Marinoni V, Finardi G, Bellomo G, Thor H, et al. Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin. Arch Biochem Biophys 1988; 264: 261-9.
Ahmed-Choudhury J, Orsler DJ, Coleman R. Hepatobiliary effects of tertiary-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. Toxicol Appl Pharmacol 1998; 152: 270-5.
Roma MG, Orsler DJ, Coleman R. Canalicular retention as a marker of tight junctional permeability in isolated hepatocyte couplets: effects of protein kinase modulation and cholestatic agents. Fund Appl Toxicol 1997; 37: 71-81.
Pérez LM, Milkiewicz P, Elias E, Coleman R, Sanchez Pozzi EJ, Roma MG. Oxidative stress induces internalization of the bile salt export pump, Bsep, and bile salt secretory failure in isolated rat hepatocyte couplets: a role for protein kinase C and prevention by protein kinase A. Toxicol Sci 2006; 91: 150-8.
Stone V, Johnson GD, Wilton JC, Coleman R, Chipman JK. Effect of oxidative stress and disruption of Ca2+ homeostasis on hepatocyte canalicular function in vitro. Biochem Pharmacol 1994; 47: 625-32.
Stone V, Lankester DJ, Wilton JC, Coleman R, Chipman JK. Toxicological insult of analicular function in rat hepatocyte couplets: the role of calcium. Toxicol in Vitro 1994; 8: 539-41.
Boyer JL. Tight junctions in normal and cholestatic liver: does the paracellular pathway have functional significance? Hepatology 1983; 3: 614-7.
Sekine S, Ito K, Horie T. Oxidative stress and Mrp2 internalization. Free Radic Biol Med 2006; 40: 2166-74.
Yu QY, Shu M, Dai JH, Ma JB, Yu Y, Liu DH. The mechanism of the increase of plasma bilirubin after hepatic ischemia-reperfusion in rats. Zhonghua Gan Zang Bing Za Zhi 2007; 15: 763-6.
James SI, Ahokas JT. Modulation of sulphobromophthalein excretion by ethacrynic acid. Xenobiotica 1992; 22: 1433-9.
Kawamoto S, Tashiro S, Miyauchi Y, Inoue M. Changes in circulatory status and transport function of the liver induced by reactive oxygen species. Am J Physiol 1995; 268: G47-53.
Elias E, Hruban Z, Wade JB, Boyer JL. Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 1980; 77: 2229-33.
Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273: 29745-53.
D’Atri F, Citi S. Cingulin interacts with F-actin in vitro. FEBS Lett 2001; 507: 21-4.
Heiskala M, Peterson PA, Yang Y. The roles of claudin superfamily proteins in paracellular transport. Traffic 2001; 2: 93-8.
Rost D, Kartenbeck J, Keppler D. Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology 1999; 29: 814-21.
Kocher O, Comella N, Gilchrist A, Pal R, Tognazzi K, Brown LF, et al. PDZK1, a novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein. Lab Invest 1999; 79: 1161-70.
Kojima H, Sakurai S, Yoshiji H, Uemura M, Yoshikawa M, Fukui H. The role of radixin in altered localization of canalicular conjugate export pump Mrp2 in cholestatic rat liver. Hepatol Res 2008; 38: 202-10.
Shu M, Peng CH, Chen H, Shen BY, Qiu WH, Jiang ZH et al. Expression and localization of multi-drug resistance-associated protein 2 and radixin after hepatic ischemia-reperfusion: experiment with rats. Zhonghua Yi Xue Za Zhi 2007; 87: 947-52.
Kikuchi S, Hata M, FK, Yamane Y, Matsui T, Tamura A, et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 2002; 31: 320-5.
Wu H, Parsons JT. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993; 120: 1417-26.
Hallbrucker C, Ritter M, Lang F, Gerok W, Haussinger D. Hydroperoxide metabolism in rat liver. K+ channel activation, cell volume changes and eicosanoid formation. Eur J Biochem 1993; 211: 449-58.
Kubitz R, D´Urso D, Keppler D, Häussinger D. Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology 1997; 113: 1438-42.
Reed DJ. Status of calcium and thiols in hepatocellular injury by oxidative stress. Semin Liver Dis 1990; 10: 285-92.
Orrenius S, Burkitt MJ, Kass GE, Dypbukt JM, Nicotera P. Calcium ions and oxidative cell injury. Ann Neurol 1992; 32 Suppl: S33-42.
Shirai Y, Saito N. Activation mechanisms of protein kinase C: maturation, catalytic activation, and targeting. J Biochem (Tokyo) 2002; 132: 663-8.
Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000; 28: 1349-61.
Nathanson MH, Gautam A, Bruck R, Isales CM, Boyer JL. Effects of Ca2+ agonists on cytosolic Ca2+ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver. Hepatology 1992; 15: 107-16.
Corasanti JG, Smith ND, Gordon ER, Boyer JL. Protein kinase C agonists inhibit bile secretion independently of effects on the microcirculation in the isolated perfused rat liver. Hepatology 1989; 10: 8-13.
Kan KS, Coleman R. The calcium ionophore A23187 increases the tight-junctional permeability in rat liver. Biochem J 1988; 256: 1039-41.
Lowe PJ, Miyai K, Steinbach JH, Hardison WG. Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol 1988; 255: G454-61.
Llopis J, Kass GE, Duddy SK, Farell GC, Gahm A, Orrenius S. Mobilization of the hormone-sensitive calcium pool increases hepatocyte tight junctional permeability in the perfused rat liver. FEBS Lett 1991; 280: 84-6.
Roma MG, Ahmed-Choudhury J, Coleman R. The protein kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methyl-piperzine (H-7) prevents and reverses Ca2+-mediated injury in isolated rat hepatocyte couplets. Toxicol Appl Pharmacol 1999; 161: 192-201.
Roma MG, Stone V, Shaw R, Coleman R. Vasopressin-induced disruption of actin cytoskeletal organization and canalicular function in isolated rat hepatocyte couplets: possible involvement of protein kinase C. Hepatology 1998; 28: 1031-41.
Nathanson MH, Gautam A, Ng OC, Bruck R, Boyer JL. Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol 1992; 262: G1079-86.
Keenan C, Kelleher D. Protein kinase C and the cytoskeleton. Cell Signal 1998; 10: 225-32.
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2006; 18: 276-84.
Dodane V, Kachar B. Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membr Biol 1996; 149: 199-209.
Kubitz R, Saha N, Kuhlkamp T, Dutta S, vom Dahl S, Wettstein M, et al. Ca2+-dependent protein kinase C-isoforms induce cholestasis in rat liver. J Biol Chem 2004; 279: 10323-30.
Chambers TC, Pohl J, Raynor RL, Kuo JF. Identification of specific sites in human P-glycoprotein phosphorylated by protein kinase C. J Biol Chem 1993; 268: 4592-5.
Sen P, Chakraborty PK, Raha S. p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability. FEBS Lett 2005; 579: 4402-6.
Kwak MK, Itoh K, Yamamoto M, Sutter TR, Kensler TW. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol Med 2001; 7: 135-45.
Yamane Y, Furuichi M, Song R, Van NT, Mulcahy RT, Ishikawa T, et al. Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. J Biol Chem 1998; 273: 31075-85.
Kohle C, Bock KW. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol 2007; 73: 1853-62.
Ketterer B, Meyer DJ. Glutathione transferases: a possible role in the detoxication and repair of DNA and lipid hydroperoxides. Mutat Res 1989; 214: 33-40.
Renes J, de Vries EE, Hooiveld GJ, Krikken I, Jansen PL, Muller M. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000; 350 Pt 2: 555-61.
Srivastava S, Chandra A, Wang LF, Seifert WE, Jr., DaGue BB, Ansari NH, et al. Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart. J Biol Chem 1998; 273: 10893-900.
Byczkowski JZ, Gessner T. Effects of superoxide generated in vitro on glucuronidation of benzo[a]pyrene metabolites by mouse liver microsomes. Int J Biochem 1987; 19: 531-7.
Umemura T, Kuroiwa Y, Kitamura Y, Ishii Y, Kanki K, Kodama Y, et al. A crucial role of Nrf2 in in vivo defense against oxidative damage by an environmental pollutant, pentachlorophenol. Toxicol Sci 2006; 90: 111-9.
Clement YN, Williams AF. Protection against paracetamol-induced hepatic injury by prazosin pre-treatment in CD-1 mice. Mutat Res 2005; 579: 182-8.
Ebner T, Burchell B. Substrate specificities of two stably expressed human liver UDP-glucuronosyltransferases of the UGT1 gene family. Drug Metab Dispos 1993; 21: 50-5.
Liu RM, Sainsbury M, Tabor MW, Shertzer HG. Mechanisms of protection from menadione toxicity by 5,10-dihydroindeno[1,2,-b]indole in a sensitive and resistant mouse hepatocyte line. Biochem Pharmacol 1993; 46: 1491-9.
Vollrath V, Wielandt AM, Iruretagoyena M, Chianale J. Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene. Biochem J 2006; 395: 599-609.
Aleksunes LM, Slitt AL, Maher JM, Augustine LM, Goedken MJ, Chan JY, et al. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol Appl Pharmacol 2008; 226:74-83.
Adachi T, Nakagawa H, Chung I, Hagiya Y, Hoshijima K, Noguchi N, et al. Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J Exp Ther Oncol 2007; 6: 335-48.
Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 2007; 1773: 283-308.
Homolya L, Varadi A, Sarkadi B. Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003; 17: 103-14.
Crawford DR, Cerutti PA. Expression of oxidant stress-related genes in tumor promotion of mouse epidermal JB6 cells. New York: Plenum Press; 1987: 183-90.
Halliwell B, Gutteridge J. Free radicals in biology and medicine. Oxford: Oxford University Press; 1999.
Gong P, Cederbaum AI. Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. Hepatology 2006; 43: 144-53.
Tan KP, Yang M, Ito S. Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress. Mol Pharmacol 2007; 72: 1380-90.
Yueh MF, Tukey RH. Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice. J Biol Chem 2007; 282: 8749-58.
Hayashi A, Suzuki H, Itoh K, Yamamoto M, Sugiyama Y. Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem Biophys Res Commun 2003; 310: 824-9.
Wakabayashi N, nkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 2004; 101: 2040-5.
Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, et al. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 2007; 46: 1597-610.
Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003; 43: 233-60.
Nguyen T, Sherratt PJ, Huang HC, Yang CS, Pickett CB. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element: degradation of Nrf2 by the 26 S proteasome. J Biol Chem 2003; 278: 4536-41.
Stewart D, Killeen E, Naquin R, Alam S, Alam J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 2003; 278: 2396-402.
Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006; 38: 769-89.
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13:76-86.
Hong F, Sekhar KE, Freeman ML, Liebler DC. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem 2005;280: 31768-75.
Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: Role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 2002; 22: 2883-92.
Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A 2000; 97: 12475-80.
Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 2003; 278: 44675-82.
Harada M, Sakisaka S, Terada K, Kimura R, Kawaguchi T, Koga H et al. Role of ATP7B in biliary copper excretion in a human hepatoma cell line and normal rat hepatocytes. Gastroenterology 2000; 118: 921-8.
Kato J, Kohgo Y, Sugawara N, Katsuki S, Shintani N, Fujikawa K, et al. Abnormal hepatic iron accumulation in LEC rats. Jpn J Cancer Res 1993; 84: 219-22.
Sternlieb I, Quintana N, Volenberg I, Schilsky ML. An array of mitochondrial alterations in the hepatocytes of Long-Evans Cinnamon rats. Hepatology 1995; 22: 1782-7.
Yamamoto H, Hirose K, Hayasaki Y, Masuda M, Kazusaka A, Fujita S. Mechanism of enhanced lipid peroxidation in the liver of Long-Evans cinnamon (LEC) rats. Arch Toxicol 1999; 73: 457-64.
Yamamoto H, Watanabe T, Mizuno H, Endo K, Hosokawa T, Kazusaka A, et al. In vivo evidence for accelerated generation of hydroxyl radicals in liver of Long-Evans Cinnamon (LEC) rats with acute hepatitis. Free Radic Biol Med 2001; 30: 547-54.
Levy E, Brunet S, Alvarez F, Seidman E, Bouchard G, Escobar E, et al. Abnormal hepatobiliary and circulating lipid metabolism in the Long-Evans Cinnamon rat model of Wilson’s disease. Life Sci 2007; 80: 1472-83.
Chiba M, Itagaki S, Kobayashi M, Hirano T, Iseki K. Characterization of hepatobiliary organic anion transporters in Long-Evans Cinnamon rats. Drug Metab Pharmacokinet 2007; 22: 387-90.
Du C, Fujii Y, Ito M, Harada M, Moriyama E, Shimada R, et al. Dietary polyunsaturated fatty acids suppress acute hepatitis, alter gene expression and prolong survival of female Long-Evans Cinnamon rats, a model of Wilson disease. J Nutr Biochem 2004; 15: 273-80.
Itagaki S, Sugawara M, Kobayashi M, Miyazaki K, Hirano T, Iseki K. Comparison of the disposition behavior of organic anions in an animal model for Wilson’s disease (Long-Evans Cinnamon rats) with that in normal Long-Evans Agouti rats. Drug Metab Pharmacokinet 2004; 19: 150-4.
Exley C. The pro-oxidant activity of aluminum. Free Radic Biol Med 2004; 36: 380-7.
Bondy SC, Guo-Ross SX, Pien J. Mechanisms underlying the aluminum-induced potentiation of the pro-oxidant properties of transition metals. Neurotoxicology 1998; 19: 65-71.
Toninello A, Clari G, Mancon M, Tognon G, Zatta P. Aluminum as an inducer of the mitochondrial permeability transition. J Biol Inorg Chem 2000; 5: 612-23.
Klein GL, Heyman MB, Lee TC, Miller NL, Marathe G, Gourley WK, et al. Aluminum-associated hepatobiliary dysfunction in rats: relationships to dosage and duration of exposure. Pediatr Res 1988; 23: 275-8.
Tanaka Y, Chen C, Maher JM, Klaassen CD. Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation 2006; 82: 258-66.
Tanaka Y, Chen C, Maher JM, Klaassen CD. Ischemia-reperfusion of rat livers decreases liver and increases kidney multidrug resistance associated protein 2 (mrp2). Toxicol Sci 2008; 101: 171-8.
Saris NE, Eriksson KO. Mitochondrial dysfunction in ischaemia-reperfusion. Acta Anaesthesiol Scand Suppl 1995; 107: 171-6.
Morin D, Pires F, Plin C, Tillement JP. Role of the permeability transition pore in cytochrome C release from mitochondria during ischemia-reperfusion in rat liver. Biochem Pharmacol 2004; 68: 2065-73.
Jaeschke H, Mitchell JR. Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury. Biochem Biophys Res Commun 1989; 160: 140-7.
Saksela M, Lapatto R, Raivio KO. Irreversible conversion of xanthine dehydrogenase into xanthine oxidase by a mitochondrial protease. FEBS Lett 1999; 443: 117-20.
Shibuya H, Ohkohchi N, Tsukamoto S, Satomi S. Tumor necrosis factor-induced, superoxide-mediated neutrophil accumulation in cold ischemic/reperfused rat liver. Hepatology 1997; 26: 113-20.
Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol 1993; 264: G801-G809.
Hisama N, Yamaguchi Y, Ishiko T, Miyanari N, Ichiguchi O, Goto M, et al. Kupffer cell production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion injury in rats. Hepatology 1996; 24: 1193-8.
Suzuki S, Toledo-Pereyra LH, Rodriguez F, Lopez F. Role of Kupffer cells in neutrophil activation and infiltration following total hepatic ischemia and reperfusion. Circ Shock 1994; 42: 204-9.
Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact 1991; 79: 115-36.
Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun 1991; 15: 277-84.
Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 1991; 260: G355-62.
Zar HA, Pretto EA. Postischemic hepatic lipid peroxidation, monitored by chemiluminescence, depends on duration of ischemia. Transplant Proc 1996; 28: 2980-2.
Fukai M, Hayashi T, Yokota R, Shimamura T, Suzuki T, Taniguchi M, et al. Lipid peroxidation during ischemia depends on ischemia time in warm ischemia and reperfusion of rat liver. Free Radic Biol Med 2005; 38: 1372-81.
Jaeschke H, Smith CV, Mitchell JR. Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver. J Clin Invest 1988; 81: 1240-6.
Jung SE, Yun IJ, Youn YK, Lee JE, Ha J, Noh DY, et al. Effect of protease inhibitor on ischemia-reperfusion injury to rat liver. World J Surg 1999; 23: 1027-31.
Erdogan O, Yildiz S, Basaran A, Demirbas A, Yesilkaya A. Effect of intraportal verapamil infusion on hepatic ischemia-reperfusion injury. Pol J Pharmacol 2001; 53: 137-41.
Bonnes-Taourel D, Guerin MC, Torreilles J. Is malonaldehyde a valuable indicator of lipid peroxidation? Biochem Pharmacol 1992; 44: 985-8.
Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990; 9: 515-40.
Kehrer JP, Lund LG. Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 1994; 17: 65-75.
Okuda M, Lee HC, Chance B, Kumar C. Glutathione and ischemia-reperfusion injury in the perfused rat liver. Free Radic Biol Med 1992; 12: 271-9.
Ishii K, Arima T, Suita S. Verapamil attenuates postischemic oxidative injury in the rat liver. Res Exp Med (Berl) 1992; 192: 151-9.
Boin IF, Silva OC, Souza ME, Santos AC, Leonardi LS. Pyruvate kinase activation and lipoperoxidation after selective hepatic ischemia in Wistar rats. Acta Cir Bras 2006; 21 Suppl 1: 19-23.
Tsung A, Kaizu T, Nakao A, Shao L, Bucher B, Fink MP et al. Ethyl pyruvate ameliorates liver ischemia-reperfusion injury by decreasing hepatic necrosis and apoptosis. Transplantation 2005; 79: 196-204.
Mathews WR, Guido DM, Fisher MA, Jaeschke H. Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radic Biol Med 1994; 16: 763-70.
Kihara K, Ueno S, Sakoda M, Aikou T. Effects of hyperbaric oxygen exposure on experimental hepatic ischemia reperfusion injury: relationship between its timing and neutrophil sequestration. Liver Transpl 2005; 11: 1574-80.
Shen SQ, Zhang Y, Xiang JJ, Xiong CL. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 2007; 13: 1953-61.
Trauner M, Fickert P, Stauber RE. Inflammation-induced cholestasis. J Gastroenterol Hepatol 1999; 14: 946-59.
Kubitz R, Wettstein M, Warskulat U, Häussinger D. Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology 1999; 116: 401-10.
Paulusma CC, Kothe MJ, Bakker CT, Bosma PJ, van B, I, van Marle J, et al. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology 2000; 31: 684-93.
Almada LL, Scandizzi AL, Guibert EE, Furno G, Rodriguez JV. Biliary inorganic phosphate as a tool for assessing cold preservation-reperfusion injury: a study in the isolated perfused rat liver model. Liver Transpl 2003; 9: 160-9.