2007, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2007; 28 (2)
Microsensor characterization base on electrochemical impedance spectroscopy
Prado OJ, Padilla MJA, Díaz CJ, Nadi M
Language: Spanish
References: 42
Page: 110-120
PDF size: 254.91 Kb.
ABSTRACT
This paper proposed measuring method to obtain electrical properties of a dissolution properties based on electrochemical impedance spectroscopy (EIS) measurement using a micrometric dimension sensor. Polarization impedance effects on the measurement are also reported. The used measurement frequency range is 100 Hz to 1MHz, with a serum temperature of 37 ± 0.5°C and the measurements were made using a commercial LRC meter. A level voltage of 25 mV was applied to the microsensor, which is a matrix of platinum microelectrodes, having application in electrical impedance tomography (EIT). The microelectrodes dimensions are 100 µm x 100 µm and a thickness of 180 nm. The microsensor characteristics were obtained from a potassium chloride solution, which electrical properties are well known. In order to compare the obtained experimentation data a numeric simulation of the microsensor theorical model was carried out, based on the finite element method (FEM). According to measurement results obtained with the proposed measuring method electrical properties values tendency reported in other researches, at higher frequencies than 10 KHz, were confirmed, specifically for electrical conductivity.
REFERENCES
l. Macdonald JR, Kenan WR. Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley1987.
Sluyters-Rehbach. Impedances of electrochemical systems: Terminology nomenclature, and representation, Part I: cells with metal electrodes and liquid solutions. (IUPAC Recommendations 1994) M., Pure Appl Chem 1994; 66; 1831-1891.
Zhai NS, Li MW, Wang WL, Zhang DL, Xu DG. The application of the EIS in Li-ion batteries measurement. J Physics conference series. 2006; 48: 1157-1161.
Prado J. Conception et realisation d’un microsystème par spectroscopie de bioimpedance. Tesis Doctoral, Nancy Francia, 2006.
Wise KD. Integrated sensors, microactuators, and microsystems (MEMS). Proc IEEE 1998; 86: 1531–1746.
Manz A, Becker H. Microsystem Technology in Chemistry and Life. Sciences Springer (New York) 1999.
Whitesides GM, Ostuni E, Takayam S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001; 3: 335–373.
Thielecke H, Mack A, Robitzki A. Living Chips: Cell Sensors for Toxicity and Therapeutical Biomonitoring. Germany Proc of micro tec. 2000.
Ziaie B, Baldi B, Lei M, Gu Y, Siegel RA. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advance Drug Delivery 2004; 56: 145-172.
Prado J, Margo C, Kouider M, Nadi M. Auto balancing bridge method for bioimpedance measurement at low frequency. 1st international conference on sensing technology November 21-23, Palmerston North New Zealand, 2005: 23-27.
Thielecke H, Mack A, Robitzki A. A Multicellular Spheroid-Based Sensor for Anti-Cancer Therapeutics. Biosens Bioelectron 2001; 16: 261-269.
Martinoia S, Massobrio P, Bove M, Massobrio G. Cultured Neurons Coupled to Microelectrode Arrays: Circuit Models, Simulations and Experimental Data. IEEE Trans on Biomed 2004; 51(5): 859-863.
Rahmana ARA, Lob CM, Bhansali S. A micro-electrode array biosensor for impedance spectroscopy of human umbilical vein endothelial cells. Sensors and Actuators B 2006; 118: 115–120.
Kovacs GTA. Microelectrode models for neural interfaces. In: Stenger DA, McKenna TM, Eds. Enabling technologies for cultured neural networks. Chapter in, Enbling Technologies for Cultured Neural Networks. Academic Press, New York, 1994; 121-166. ISBN: 0126659702
Helmholtz HL. Studien ber electrische grenzschichte. Ann Phys Chem 1879; 7: 377-382.
Gouy M. Sur la constitution de la charge électrique a la surface d’un electrolyte. J Phys 1910; 9: 457-468.
Chapman DL. A contribution to the theory of electro capillarity. Phil Mag 1913; 25(6): 475–481.
Schwan HP. Electrode polarization impedance and measurements in biological materials. Annals of the New York Academy of Science 1968; 148(1): 191-209.
Robinson DA. The electrical properties of metal microelectrodes. Proceeding of the IEEE, 1996; 56(6): 1065-1071.
Ivorra A, Gomez R, Noguera N, Villa R, Sola A, Palacios et al. Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosensors Bioelectron 2003; 19: 391–399.
Schwan HP. Determination of biological impedances Physical techniques in biological research. Academic press, 1963.
Macdonald JR, Kenan WR. Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley1987.
Sluyters-Rehbach. Impedances of electrochemical systems: Terminology nomenclature, and representation, Part I: cells with metal electrodes and liquid solutions. (IUPAC Recommendations 1994) M., Pure Appl Chem 1994; 66; 1831-1891.
Zhai NS, Li MW, Wang WL, Zhang DL, Xu DG. The application of the EIS in Li-ion batteries measurement. J Physics conference series. 2006; 48: 1157-1161.
Prado J. Conception et realisation d’un microsystème par spectroscopie de bioimpedance. Tesis Doctoral, Nancy Francia, 2006.
Wise KD. Integrated sensors, microactuators, and microsystems (MEMS). Proc IEEE 1998; 86: 1531–1746.
Manz A, Becker H. Microsystem Technology in Chemistry and Life. Sciences Springer (New York) 1999.
Whitesides GM, Ostuni E, Takayam S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001; 3: 335–373.
Thielecke H, Mack A, Robitzki A. Living Chips: Cell Sensors for Toxicity and Therapeutical Biomonitoring. Germany Proc of micro tec. 2000.
Ziaie B, Baldi B, Lei M, Gu Y, Siegel RA. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advance Drug Delivery 2004; 56: 145-172.
Prado J, Margo C, Kouider M, Nadi M. Auto balancing bridge method for bioimpedance measurement at low frequency. 1st international conference on sensing technology November 21-23, Palmerston North New Zealand, 2005: 23-27.
Thielecke H, Mack A, Robitzki A. A Multicellular Spheroid-Based Sensor for Anti-Cancer Therapeutics. Biosens Bioelectron 2001; 16: 261-269.
Martinoia S, Massobrio P, Bove M, Massobrio G. Cultured Neurons Coupled to Microelectrode Arrays: Circuit Models, Simulations and Experimental Data. IEEE Trans on Biomed 2004; 51(5): 859-863.
Rahmana ARA, Lob CM, Bhansali S. A micro-electrode array biosensor for impedance spectroscopy of human umbilical vein endothelial cells. Sensors and Actuators B 2006; 118: 115–120.
Kovacs GTA. Microelectrode models for neural interfaces. In: Stenger DA, McKenna TM, Eds. Enabling technologies for cultured neural networks. Chapter in, Enbling Technologies for Cultured Neural Networks. Academic Press, New York, 1994; 121-166. ISBN: 0126659702
Helmholtz HL. Studien ber electrische grenzschichte. Ann Phys Chem 1879; 7: 377-382.
Gouy M. Sur la constitution de la charge électrique a la surface d’un electrolyte. J Phys 1910; 9: 457-468.
Chapman DL. A contribution to the theory of electro capillarity. Phil Mag 1913; 25(6): 475–481.
Schwan HP. Electrode polarization impedance and measurements in biological materials. Annals of the New York Academy of Science 1968; 148(1): 191-209.
Robinson DA. The electrical properties of metal microelectrodes. Proceeding of the IEEE, 1996; 56(6): 1065-1071.
Ivorra A, Gomez R, Noguera N, Villa R, Sola A, Palacios et al. Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosensors Bioelectron 2003; 19: 391–399.
Schwan HP. Determination of biological impedances Physical techniques in biological research. Academic press, 1963.