2007, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2007; 28 (2)
A qualitative stress analysis of a cross section of the trabecular bone tissue of the femoral head by photoelasticity
Rodríguez LJM, Vargas TM, Navarro TJ, Abundez PA, Reyes GS, Vela AD
Language: English
References: 18
Page: 105-109
PDF size: 176.58 Kb.
ABSTRACT
In this work a qualitative analysis of the stress distribution of the femoral head of a human femur by photoelasticity is presented. A model of the cross section was obtained by plaster casting, carefully maintaining the internal architecture of the porous bone. Here punctual loading was applied aimed to evaluate the trabecular behavior. The fringe patterns observed in the porous bone model showed that the maximum stress concentration is shifted from the surface to the interior of the bone, allowing the damping of external forces and diffused them towards the interior of the bone tissue, thus reducing the contact stresses at the surface of the femoral head joint. These results showed that solid models will tend to mislead the stress behavior within the bone.
REFERENCES
Wolff J. Das Gesetz der Transformation der Knochen. Berlin A. Hirchwild Translated as: The Law of Bone Remodeling. Maquet P, Furlong R. Springer-Verlag, Berlin 1986. 1892.
Huiskes R. If bone is the answer, then what is the question? J Anat 2000; 197: 145-156.
Cowin SC. The relationship between the elasticity tensor and the fabric tensor. Mechanics of Materials 1985; 4: 137-47.
Cowin SC. Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomechanical Engineering 1986; 108: 83-88.
Hutchinson EB, Riley PO, Krebs DE. A Dynamic Analysis of the Joint Forces and Torques during Rising from a Chair. IEEE Transactions on Rehabilitation Engineering 1994: 2(2).
Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP. Mechanical Loads on the Knee Joint During Deep Flexion. Bed-ASME 2001: 50.
Fening SD, Mehta BV. Finite Element Analysis of the Knee with the Menisci, Department of Mechanical Engineering, Ohio University. Athens, OH.
Morcovescu V. The Stress Values Numerical Computing in the Proximal Femur Under Physiological Load Conditions. Politehnica University of Timisoara, Timisoara, Rumania.
Claramunt R, Ros A. Técnicas de Análisis de Tensiones y Deformaciones en el Material Óseo: Aplicabilidad en la Evaluación de Implantes. VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, 2002: 269-277.
Postak PD, Heim CS, Greenwald AS. Tibial Plateau Surface Stress in TKA: A Factor Influencing Polymer Damage Series V-All Poly Tibial Designs. Orthopaedic Research Laboratories. The Mt. Sinai Medical Center, Cleveland, Ohio.
Fessler H. Load Distribution in a Model of a Hip Joint. J Bone Joint Surg 39B. 1957: 145-53.
Papachristou G. Photoelastic Study of the Internal and Contact Stresses on the Knee Joint Before and After Osteotomy. Arch Orthop Trauma Surg 2004; 124: 288-297.
Antonescu DN. L’Ostéotomie du Genou Est-elle Encore Indiquée dans la Gonarthrose. Acta Orthopaedica Belgica. 2000: 66(5).
Orr JF. Images from Waves –photoelastic Modelling of Bones. Irish Journal of Medical Science 2000; 172(4): 209-213.
Aviña X. 1997. Diseño y Construcción de un Polariscopio y Análisis de Esfuerzos por el Método de Fotoelasticidad, Tesis de Maestría, Centro Nacional de Investigación y Desarrollo Tecnológico, México, 1998.
Soncini M, Vandini L, Redaelli A. Finite Element Analysis of a Knee Joint Replacement During a Gait Cycle. Journal of Applied Biomaterials & Biomechanics 2004; 2: 45-54.
Hernández A. Rediseño de la Prótesis de Cadera Tipo Charnley para la Disminución de Debris. Tesis de Maestría. Centro Nacional de Investigación y Desarrollo Tecnológico, México, 2005
Wang YC, Lakes RS. Composites with Inclusions of Negative Bulk Modulus: Extreme Damping and Negative Poisson’s Ratio. Journal of Composite Materials 2005; 39(18): 1645-1657.