2007, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2007; 28 (2)
Vibrational modes analysis of isotropic and orthotropic models of the tympanic membrane
Martínez-Celorio RA, Rodríguez BH, Rodríguez CRA, Castro-Sánchez R, Martí-López L, Vega CA
Language: Spanish
References: 16
Page: 83-91
PDF size: 191.01 Kb.
ABSTRACT
An analysis of vibrational model by using Finite Element Method (FEM) of isotropic and orthotropic models of the eardrum is proposed. A human eardrum was digitized for reconstructing its geometry and be able to study the vibrational modes by means of a FEM program. The mechanical properties in each one of eardrum parts can be added inside the program to look like a real situation and simulate also the membrane connection to temporal bone as well as the contact between manubrium and malleus. Three models were analyzed, these are: isotropic where was considering contact or not between malleus and manubrium and the model orthotropic with mechanical properties distributed in radial and azimuthal directions. The models allow to analyze how influence of these changes on the vibrational modes. Advantages and disadvantages are discussed.
REFERENCES
Mach E, Kessel J. Beitrage zur Topography und Mechanik des Mittelohres. Sitzungsber. Akad. Wiss. Wien (Math.- Phys. K1.) 1874; Abt. 3(69): 221-243.
Helmholtz H. The mechanism if the ossicles of the ear and tympanic membrane. Pflugers Arch Physiol (Bonn) 1868; 1: 1-60.
Dahmann H. Zur Phiysiologie des Horens; experimentelle Untersuchungen uber die Mechanik der Gehorknochelchenkette, sowie uber deren Verhalten auf ton und Luftdruk, teil I. Z. Hals Nas Ohrenheilk 1929; 24: 462-498.
Von Békesy G. On the measurement of the amplitude of vibration of the ossicles with a capacitive probe. Akustishe Zeitschrift 1941; 6: 1-16.
Tonndorf J, Khanna SM, Tympanic membrane vibrations in human cadaver ears studied by time averaged holography. Journal of Acoustical Society of America 1972; 52: 1221-1233.
Willemin JK, Dandliker R, Khanna SM. Heterodyne interferometer for submicroscopic vibration measurements in the inner ear. J Acoust Soc Am 1988; 83: 787-795.
Decraemer WF, Maes MA, Vanhuyse VJ. An elastic stress–strain relation for soft biological tissues based on a structural model. Journal of Biomechanics 1980; 13: 463-468.
Zwislocki JJ. Analysis of the middle-ear function. Part I: Input impedance. J Acoust Soc Am 1962; 34 (8, Pt 2); 1514-1523.
Matthews JW. Modeling reverse middle ear transmission of acoustic distortion signals (Delft U. P., The Netherlands), 1983: 11-18.
Shaw EAG, Stinson MR. “Network concepts and energy flow in the human middle ear”. J Acoust Soc Am 1981; 69: S44.
Shaw EAG, Stinson MR. The human External and Middle Ear: Models and Concepts (Delft, The Netherlands), 1983: 3-10.
Faya J, Puriaa S, Willem F. Decraemer, Charles Steelea, three approaches for estimating the elastic modulus of the tympanic membrane. Journal of Biomechanics 2005; 38: 1807–1815.
Gaihede M, Liao D, Gregersen H. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears, Phys Med Biol 2007; 52: 803-814.
Ferris P, Prendergast PJ. Middle-ear dynamics before and after ossicular replacement. Journal of Biomechanics 2000; 33: 581-590.
Ross CTF. Finite element. Methods in Engineering Science, Ellis Harwood, England (1990). P. Ferris, P.J. Prendergast, Middle-ear dynamics before and after ossicular replacement. Journal of Biomechanics 2000; 33: 581-590.
Vallejo LA, Delgado VM, Hidalgo A, Gil-Carcedo E, Gil-Carcedo LM, Montoya F. Modelado de la geometría del conducto auditivo externo mediante el método de los elementos finitos, Acta Otorrinolaringología Esp 2006; 57: 82-89.