2006, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2006; 9 (2)
Hydroxyapatite, relevance in mineral tissues and biomedical aplications
García-Garduño MV, Reyes-Gasga J
Language: Spanish
References: 28
Page: 90-95
PDF size: 200.12 Kb.
ABSTRACT
The hydroxyapatite is an important structural component of mineral tissues and a great deal for researchers because its biocompatibility, which have biomedical applications in Dentistry, Orthopedics, and Maxillofacial Chirurgic. Hydroxyapatite is the main crystal of hard tissues, bone and teeth. There are many experimental investigations on this crystal that includes its nucleation, growth, and morphology, and thermodynamics behavior. In nature it is found in sedimentary rocks. As biomaterial, hydroxyapatite and its precursors are synthesized from sea shells, and corals. Hydroxyapatite has many perspectives in medicine and it will be an important element for the medicine genomic. In this work we review and go trough the study of hydroxyapatite given an example of its analysis in the field of human tooth enamel.
REFERENCES
Smith Deanne, K. Calcium phosphate apatites in nature. In Hydroxyapatite and related materials (eds. Browns, P.W. & Constantz, B., 1995) 46-52 (CRC Press, London, 2000).
Landis, W.J., et al. Mineralization of collagen may occur on fibril surfaces evidence for conventional and hight voltage Electron Microscopy and three dimensional imaging. J. Structural Biology 117, 24-35 (1996).
Zapanta Legeros, R. Biological and synthetic apatites. In Hydroxyapatite and related materials (eds. Browns, P.W. & Constantz, B., 1995) 3-28 (CRC Press, London, 2000).
Naray-Szabo, S. The structure of apatite (CaF)Ca4(PO4)3. Z. Crist. 75, 387-398 (1992).
De Jong, W.F. La substance minerale dans le os. Rev. Tam. Chim. 4, (45), 448 (1926).
Tresguerres, J.A.F. Fisiología humana (McGrawHill Interamericana, 2003) 2ª ed. págs. 983-1020.
Takeshita, N., et al. Osteoclastic features of multinucleate giant cells responding to synthetic hydroxyapatite implanted in rat jaw bone. J. Electron Microscopy 41, 141-146 (1992)
Garg, A., Gangenese, D. & Peace, I. Using platelet rich plasma to develop an autologous membrane for growth factor delivery in dental implant therapy. Dental Morphology Update 11, 6 (2000).
Garg, A. Bone induction with and without membrane and using platelet rich plasma. Oral Maxilofac. Surg. Clin. North Am. 13, 437-448 (2001).
Max, R.E. & Gang, A.K. The science of platelet–rich plasma (Il Quintaessence Pub. Co. Inc., 2005). págs. 3-49.
Nakashima, M. & Redi, H. The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology 21, 9 (2003).
Solomon, P., Berg, L. & Martin, D.W. Biología (McGrawHill-Interamericana, México, 2001).
Mann, S. Biomineralization. Principles and concepts in bioinorganic materials chemistry (Oxford University Press, London, 2001).
Brown, E.M. & McLeod, R.J. Extracelular calcium sensing and extracelular calcium signaling. Physiol. Rev. 81, 239-297 (2001).
Drucker Colín, R. Fisiología médica (Manual Moderno, México, 2005).
Vargas-Ulloa, L., García-García, R. & Reyes-Gasga, J. Conductivity in human tooth enamel. J. Materials Science 34, 2183-2188 (1999).
Legeros, R.Z. Calcium phosphates in oral biology and medicine (S. Kangel, Switzerland, 1991).
Holden, J.L. & Pharkey, J.G. Age and temperature related changes to the ultrastructure and composition of human bone mineral. J. Bone and Mineral Research 10(9) Ireland Elsevier Sci. Blackwell Sci. (1995).
Kothapalli, C., Wei, M., Vasiliev, A. & Shaw, M.T. Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mineralia 52, 5635-5663 (2004).
Belio-Reyes, A., Vargas-Ulloa, L., Jiménez-García, L.F. & Reyes-Gasga, J. Chemical analysis around the cristal dark line of the human tooth enamel crystallites. Revista Latinoamericana de Metalugia y Materiales 19, 52-56 (1999).
Wan, H., et al. Enamel matrix protein interactions. J. Bone and Material Research 20, 6 (2005).
Ratner, D., Buddy & Hoffman, J.A. An introduction to materials in medicine (Academic Press, USA, 1996).
Governa, M., et al. Hydroxyapatite orbital implant covered with facia lata, in post nucleation eye reconstruction. Eur. J. Plast Surg. 26, 331-334 (2003).
Lavernia, C. & Shoenung, J.M. Calcium phosphate ceramics as bone substitutes. Am. Ceram. Soc. Bull.70, 95-100 (1991).
Vargas-Ulloa, L., García-García, R., & Reyes-Gasga, J. In situ observation on fractal structures and electrical conductivity in human tooth enamel characterized by electron microscopy. Acta Microscópica 6, 1-10 (1997).
Duailibi, M.T., et al. Bioengineered Teeth from cultured rat tooth bud cells. J. Dent. Res. 83, 523-528 (2004).
Karsenty, G. The genetic trasnformation of bone biology. Genes and Development 13, 3037-3051 (1999).
Yamamoto, M. et al. Analysis of tooth formation by re-aggregated dental mesenchyme from mouse embryo. J. Electron Micros (Tokyo) 52, 559-566 (2003).