2006, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2006; 9 (1)
Psycological consequenses of protein oxidation by carbonylation in different biological models
Díaz-Acosta AE, Membrillo-Hernández J
Language: Spanish
References: 82
Page: 34--44
PDF size: 252.78 Kb.
ABSTRACT
Production of Reactive Oxygen Species (ROS) is an unavoidable consequence of the aerobic metabolism. Due to the accumulating experimental data relating protein oxidation to cell processes such as ageing and diverse human diseases, research in this area has been greatly increased. Proteins undergo different types of oxidative modifications, in particular, the formation of carbonyl groups, has been extensively used in the studies focused on the determination of the extent of protein damage. Despite the fact that the mechanisms linking protein oxidation and cellular processes such as proteolisis, apoptosis or reproduction have yet to be elucidated, we are close to understand the role of protein oxidation in cell physiology.
REFERENCES
Halliwell, B. & Gutteridge, J. Free Radicals in Biology and Medicine (Oxford University Press, Nueva York, 1999).
Imlay, J.A. Pathways of oxidative damage. Annu.Rev.Microbiol. 57:395-418 (2003).
Hansberg, W. Biología de las especies de oxígeno reactivas. Mensaje Bioquímico. XXVI:19-54 (2002).
Hansberg, W. La biología del dioxígeno en singulete. TIP Revista Especializada en Ciencias Químico-Biológicas. 2(2):47-55 (1999).
Dukan, S., et al. Protein oxidation in response to increased transcriptional or translational errors. Proc.Natl.Acad.Sci.U.S.A. 97:5746-5749 (2000).
Dukan, S. & Nyström, T. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev. 12:3431-3441 (1998).
Dukan, S. & Nyström, T. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J.Biol.Chem. 274:26027-26032 (1999).
Ji, L.L., Dillon, D. & Wu, E.. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am.J.Physiol 258:918-923 (1990).
Nyström, T. Translational fidelity, protein oxidation and senescence: lessons from bacteria. Aging Res.Rev. 1:693-703 (2002).
Stadtman, E.R. Protein oxidation and aging. Science 257:1220-1224 (1992).
Stadtman, E.R. & Levine, R.L. Protein oxidation. Ann.N.Y.Acad.Sci. 899:191-208 (2000).
Desmyter, L., et al. Expression of the human feritin light chain in a budding yeast fraxatin mutant affects aging and cell death. Exp.Gerontol. 39:707-715 (2004).
Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than the rate of respiration and is enhanced in pos9 but not yap1 mutants. J.Biol.Chem. 276:35396-35404 (2001).
Friguet, B., Bulteau, A.L., Chondrogianni, N., Conconi, M. & Petropoulos, I. Protein degradation by the proteasome and its implications in aging. Ann.N.Y. Acad.Sci. 908:143-154 (2000).
Sitte, N., Merker, K., Von Zglinicki, T., Grune, T. & Davies, K.J.A. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I-effects of proliferatives senescence. FASEB J. 14:2495-2502 (2000).
Shringarpure, R. & Davies, K.J. Protein turnover by the proteasome in aging and disease. Free Rad.Biol.Med. 32:1084-1089 (2002).
Ballesteros, M., Fredriksson, A. Henriksson, J. & Nyström, T. Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J.20:5280-5289 (2001).
Sies, H. Damage to plasmid DNA by singlet oxygen and its protection. Mutat. Res. 299:183-191 (1993).
Sies, H. & Menck, C.F. Singlet oxygen induced DNA damage. Mutat.Res. 275:367-375 (1992).
Humphries, K.M. & Sweda, L.I. Selective inactivation of aketoglutarate deshydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835-15841 (1998).
Esterbauer, H., Schaur, R.J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad.Biol.Med. 11:81-128 (1991).
Dakin, H.D. The oxidation of aminoacids with the production of substances of biological importance. J.Biol.Chem. 1:171-176 (1906).
Dean, R.T., Fu, S., Stocker, R. & Davies, M.J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 324:1-18 (1997).
Berlett, B.S. & Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J.Biol.Chem 272:20313-20316 (1997).
Garrison, W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins. Chem.Rev. 87:381-398 (1987).
Davies, M.J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch.Biochem.Biophys. 336:163-172 (1996).
Stadtman, E.R. & Oliver, C.N. Metal-catalyzed oxidation of proteins. Physiological consequences. J.Biol.Chem. 266:2005-2008 (1991).
Heinecke, J.W. Biochemical evidence for a link between elevated levels of homocysteine and lipid peroxidation in vivo. Curr.Atheroscler.Rep. 2:87-89 (1999).
Lewisch, S.A. & Levine, R.L. Determination of 2-oxohistidine by aminoacid analysis. Annal.Biochem. 231:440-446 (1995).
Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L. & Stadtman, E.R. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 107:323-332 (1999).
Requena, J.R., Levine, R.L. & Stadtman, E.R. Recent advances in the analysis of oxidized proteins. Amino acids 25:221-226 (2003).
Davies, M.J.A. The oxidative environment and protein damage. Biochem.Biophys.Acta 1703:93-109 (2005).
Cabiscol, E., Tamarit, J. & Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl.Microbiol. 3:3-8 (2000).
Nyström, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24:1311-1317 (2005).
Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R. & Milzani, A. Protein carbonylation in human diseases. TRENDS in Molecular Medicine. 9:169-176 (2003).
Tamarit, J., Cabiscol, E. & Ros, J. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J.Biol.Chem. 273:3027-3032 (1998).
Johansson, E., Olsson, O. & Nyström, T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J.Biol.Chem. 279:22204-22208 (2004).
38.Castegna, A., et al. Protein identification of oxidatively modified proteins in Alzheimer´s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Rad.Biol.Med. 33:562-571 (2002).
Prinz, W.A., Aslund, F., Holmgren, A. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J.Biol.Chem. 272:15661-15667 (1997).
Aslund, F. & Beckwith, J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell. 96:751-753 (1999).
Etienne, F., Spector, D., Brot, N. & Weissbach, H. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem.Biophys.Res. Commun. 300:378-382 (2003).
Spector, D., Etienne, F., Brot, N. & Weissbach, H. New membraneassociated and soluble peptide methionine sulfoxide reductases in Escherichia coli. Biochem.Biophys.Res.Commun. 302:284-289 (2003).
Picot, C.R., Perichon, M., Cintrat, J.C., Friguet, B. & Petropoulos, I. The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett. 558:74-78 (2004).
Sharov, V.S. & Schoneich, C. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free.Rad.Biol.Med. 29:986-994 (1999).
Sharov, V.S., Ferrington, T.C., Squier, C. & Schoneich, C. Diastereoselective reduction of protein-bound methionine sulfoxide reductase. FEBS Lett. 455:247-250 (1999).
Levine, R.L., Mosoni, L., Berlett, B.S. & Stadtman, E. Methionine residues as endogenous antioxidants in proteins. Proc.Natl.Acad.Sci.U.S.A. 93:15036-15040 (1996).
Shacter, E. Quantification and significance of protein oxidation in biological simples. Drug Metab.Rev., 32:307-326 (2000).
Beal, M.F. Oxidatively modified proteins in aging and disease. Free Rad. Biol. Med. 32:797-803 (2002).
Echave, P. et al. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc.Natl.Acad.Sci.U.S.A. 99:4626-4631(2002).
Winter, J., Linke, K., Jatzek, A. & Jacob, U. Severe oxidative stress causes inactivation of DnaK and activation of the redoxregulated chaperone Hps33. Mol.Cell 17:381-392 (2005).
Díaz-Acosta, A., Sandoval, M.L., Delgado-Olivares, L. & Membrillo-Hernández, J. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12. Arch.Microbiol. 185:429-438 (2006).
Fredriksson, A., Ballesteros, M., Dukan, S. & Nyström, T. Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol.Micro. 59:350-359 (2005).
Rivett, A.J. Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J.Biol.Chem. 260:12600-12606(1985).
Rivett, A.J. Preferential degradation of the oxidatively modified form of glutamina synthetase by intracellular mammalian porteases. J.Biol.Chem. 260:300-305 (1985).
Davies, K.J.A. & Lin, S.W. Degradation of oxidatively denatured proteins in Escherichia coli. Free Rad.Biol.Med. 5:215-223 (1988).
Davies, K.J.A. & Lin, S.W. Oxidatively denatured proteins are degraded by an ATP independent proteolytic pathway in Escherichia coli. Free Rad.Biol.Med. 5:225-236 (1988).
Davies, K.J.A. Protein damage and degradation by oxygen radicals. I. general aspects. J.Biol.Chem. 262:9895-9901 (1987).
Pacifici, R.E., Salo, D.C. & Davies, K.J.A. Macroxyproteinase (M.O.P.): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radical Biol. & Med. 7:521-536 (1989).
Marcilat, O., Zhang, Y., Lin, S.W. & Davies, K.J.A. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins Biochem.J. 254:677-683 (1988).
Iwai, K., et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: Implications for degradation of oxidized proteins. Proc.Natl.Acad.Sci. U.S.A. 93:15036-15040 (1988).
Grune, T., Reinheckel, T. & Davies, K.J.A. Degradation of oxidized proteins in mammalian cells. FASEB J. 11:526-534 (1997).
Roseman, J.E. & Levine, R.L. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J.Biol.Chem. 262:2101-2110 (1987).
Rivett, A.J. & Levine, R.L. Metal catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch.Biochem.Biophys. 278:26-34 (1990).
Bota, D.A., Van Remmen, H. & Davies, K.J.A. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett. 532:103-106 (2002).
Grune, T., Jung, T., Merker, K. & Davies, K.J.A. Decreased proteolisis caused by protein aggregates inclusion bodies, plaques, lipofuscin, ceroid and aggresomes during oxidative stress. Aging and disease. Int.J.Biochem.Cell Biol. 36:2519-2530 (2004).
Grune, T., Merker, K., Sandig, G. & Davies, K.J.A. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem.Biophys.Res.Commun. 305:709-718 (2003).
Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S. & Stadtman, E.R. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. J.Biol.Chem. 262:5488-5491 (1987).
Desnues, B., Gregori, G., Dunkan, S., Aguilaniu, H. & Nyström, T. Differential oxidative damage and expression of stress regulons in culturable and nonculturable Escherichia coli cells. EMBO Rep. 4:400-405 (2003).
Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis in Saccharomyces cerevisiae: a Sir2p dependent mechanism. Science 299:1751-1753 (2003).
Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021-1026 (2000).
Tissenbaum, H.A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespand in Caenorhabditis elegans. Nature 410:227-230 (2001).
Sinclair, D.A. Paradigms and pitfalls of yeast longevity research Mech. Ageing Dev. 123:857-867 (2002).
Rogina, B. & Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc.Natl.Acad.Sci. U.S.A. 101:15998-16003 (2004).
Oliver, C.N. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch.Biochem.Biophys. 253:62-72 (1987).
Cakatay, U., et al. Oxidative protein damage in type 1 diabetic pacients with and without complications. Endocr.Res. 26:365- 379 (2000).
Telci, A., et al. Oxidative protein damage in plasma of type 2 diabetic patients. Horm.Metabol.Res. 32:40-43 (2000).
Himmelfarb, J., et al. Plasma protein oxidation and carbonyl formation in chronic renal failure. Kidney Int. 58:2571-2578 (2000).
Himmelfarb, J. & McMonagle, E. Albumin is the majot plasma protein target of oxidant stress in uremia. Kidney Int. 60:358- 363 (2001).
Mattson, M.P. Pathways towards and away from Alzheimer´s disease. Nature. 430:631-639 (2004).
Castegna, A., et al. Proteomic identification of oxidatively modified proteins in Alzheimer´s disease brain Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Rad.Biol.Med. 33:562-571 (2002).
Castegna, A., et al. Proteomic identification of oxidatively modified proteins in Alzheimer´s disease brain Part II: dihydropyrimidinasa-related protein 2, -enolase and heat shock cognate 71. J.Neurochem. 82:1524-1532 (2002).
Bosnia, F., et al. Protein oxidation and lens opacity in humans. Invest. Ophtalmol.Vis.Sci. 41:2461-2465 (2000).