2006, Number 3
<< Back Next >>
Ann Hepatol 2006; 5 (3)
Genetic predisposition of cholesterol gallstone disease
Hernández-Nazará A, Curiel-López F, Martínez-López E, Hernández-Nazará Z, Panduro A
Language: English
References: 107
Page: 140-149
PDF size: 215.16 Kb.
Text Extraction
Gallstone disease (GSD) is the result of the interaction between genetic and environmental factors and it is a major disease cause of surgery with high costs to health systems. Worldwide prevalence varies according to the ethnic population suggesting that high prevalence of GSD in certain ethnic groups is due to the presence of genetic factors implicated in different metabolic pathways. However, environmental factors play a determinant role in gene expression. This review summarizes the genes involved in biliary salt and cholesterol synthesis, lipids transport and the Lith genes. Future studies should be focused on the study of interactions between genetic and environmental factors which could be specific for each population.
REFERENCES
Acalovschi M. Cholesterol gallstones: from epidemiology to prevention. Postgrad Med J 2001; 77: 221-9.
Everheart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder disease in the United States. Gastroenterology 1999; 117: 632-9.
Mendez-Sanchez N, Jessurun J, Ponciano-Rodriguez G, Alonso-de-Ruiz P, Uribe M, Hernandez-Avila M. Prevalence of gallstone disease in Mexico. A necropsy study. Dig Dis Sci 1993; 38: 680-3.
Puppala S, Dodd GD, Fowler S, Arya R, Schneider J, Farook VS, Granato R, et al. A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. Am J Hum Genet 2006; 78: 377-9.
Katsika D, Grjibovski A, Einarsson C, Lammert F, Lichtenstein P, Marschall HU. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology 2005; 41: 1138-43.
Johnson C D. ABC of the upper gastrointestinal tract. Upper abdominal pain: Gall bladder. BMJ 2001; 7: 1170-3.
Portincasa P, Moschetta A, Berardino M, Di-Ciaula A, Vacca M, Baldassarre G, Pietrapertosa A, et al. Impaired gallbladder motility and delayed orocecal transit contribute to pigment gallstone and biliary sludge formation in beta-thalassemia major adults. World J Gastroenterol 2004; 10: 2383-90.
Méndez-Sánchez N, Chavez-Tapia NC, Motola-Kuba D, Sanchez-Lara K, Ponciano-Rodríguez G, Baptista H, Ramos MH, et al. Metabolic syndrome as a risk factor for gallstone disease. World J Gastroenterol 2005; 11: 1653-7.
Leitzmann MF, Rimm EB, Willett WC, Spiegelman D, Grodstein F, Stampfer MJ, Colditz GA, et al. Recreational physical activity and the risk of cholecystectomy in women. N Engl J Med 1999; 341: 777-84.
Curiel-López F, González M, Vázquez M, Román S, Panduro A. Prevalence of insulin resistance syndrome in Mexican population with gallstone disease. Diabetes & Vascular Research 2005; 2: 167.
Xiao ZL, Chen Q, Amaral J, Biancani P, Jensen RT, Behar J. CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am J Physiol 1999; 276: G1401-7.
Ahlberg J, Angelin B, Einarsson K. Hepatic 3-hydroxy-3-metylglutaryl coenzyme A reductase activity and biliary lipid composition in man: relation to cholesterol gallstone disease and effects of cholic acid and chenodeoxycholic acid treatment. J Lipid Res 1981; 22: 410-22.
Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system: Gallstone disease. BMJ 2001; 322: 91-4.
Zanlugo S, Rogotti A, Nervi F. Hepatic cholesterol transport from plasma in to bile: implications for gallstone disease. Curr Opin Lipidol 2004; 15: 279-86.
Curiel-López F, Ruíz B, Román S, Panduro A. Predisposición Genética de la Litiasis Biliar. Investigación en Salud 2005; 7: 79-84.
Maurer KJ, Rogers AB, Ge Z, Wiese AJ, Carey MC, Fox JG. Helicobacter pylori and cholesterol gallstone formation in C57L/J mice: a prospective study. Am J Physiol Gastrointest Liver Physiol 2006; 290: G175-G182.
Suggi S, Lin S, Ohgami N, Chang CCY, Chang TY. Roles of endogenously synthesized sterols in the endocytic pathway. J Biol Chem 2006: in press May 31: 1-30.
Buhman KK, Accad M, Novak S, Choi RS, Wong JS, Hamilton RL, Turley S, et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 2000; 6: 1341-7.
Chang TY, Chang CC, Lin S, Yu C, Li BL, Miyazaki A. Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and -2. Curr Opin Lipidol 2001; 12: 289-96.
Nervi F, Bronfman M, Allalon W, Depiereux E, del Pozo E. Regulation of biliary cholesterol secretion in the rat: role of hepatic cholesterol esterification. J Clin Invest 1984; 74: 2226-37.
Smith JL, Hardie IR, Pillay SP, de Jersey J. Hepatic acyl-coenzyme A: cholesterol acyltransferase activity is decreased in patients with cholesterol gallstones. J Lipid Res 1990; 31: 1993-2000.
Stromsten A, von Bahr S, Bringman S, Saeki M, Sahlin S, Bjorkhem I, Einarsson C. Studies on the mechanism of accumulation of cholesterol in the gallbladder mucosa. Evidence that sterol 27-hydroxylase is not a pathogenetic factor. J Hepatol 2004; 40: 8-13.
Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993; 75: 187-97.
Rigotti A, Marzolo MP, Nervi F. Lipid transport from the hepatocyte into the bile. Curr Top Membr 1994; 40: 579–615.
Oude Elferink RP, Groen AK. Mechanisms of biliary lipid secretion and their role in lipid homeostasis. Semin Liver Dis 2000; 20: 293-305.
Kosters A, Jirsa M, Groen AK. Genetic background of cholesterol gallstone disease. Biochim Biophys Acta 2003; 1637: 1-19.
Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 1994; 77: 53-62.
DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ. Transport-dependent proteolysis of SREBP: relocation of Site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 1999; 99: 703-12.
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, et al. A regulatory cascade of the nuclear receptor FXR, SHP-1 and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6: 517-26.
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Awerx J, Mangelsdorf DJ, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6: 507-15.
Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol Endocrinol 2002; 16: 2065-76.
Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113: 1408-18.
Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004; 40: 539-51.
Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003; 278: 2563-70.
Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB Jr, Kliewer SA, Gonzalez JC, et al. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 2003; 278: 45062-71.
Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol 2001; 15: 1720-8.
Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002; 109: 961-71.
Shoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, Geboes K, et al. Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Nat Acad Sci 2005; 102: 2058-62.
Pan GD, Wu H, Liu JW, Cheng NS, Xiong XZ, Li SF, Zhang GF, et al. Effect of peroxisome proliferator-activated receptor-gamma ligand on inflammation of human gallbladder epithelial cells. World J Gastroenterol 2005; 11: 6061-5.
Bertolotti M, Gabbi C, Anzivino C, Mitro N, Godio C, De Fabiani E, Crestani M, et al. Decreased hepatic expression of PPAR-gamma coactivator-1 in cholesterol cholelithiasis. Eur J Clin Invest 2006; 36: 170-5.
De Vree JML, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, AtenJ, Deleuze JF, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Nat Acad Sci 1998; 95: 282-7.
Deleuze JF, Jacquemin E, Dubuisson C, Cresteil D, Dumont M, Erlinger S, Bernard O, et al. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology 1996; 23: 904-8.
Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 2001; 120: 1459-67.
Young SG, Fielding CJ. The ABCs of cholesterol efflux. Nature Genet 1999; 22: 316-8.
Vaisman BL, Lambert G, Amar M, Joyce C, Ito T, Shamburek RD, Cain WJ, et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest 2001; 108: 303-9.
Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, Seilhamer JJ, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104: R25-31.
Lee J, Tauscher A, Seo DW, Oram JF, Kuver R. Cultured gallbladder epithelial cells synthesize apolipoproteins A-I and E. Am J Physiol Gastrointest Liver Physiol 2003; 285: G630-41.
Repa JJ, Turley SD, Lobaccaro JMA, Medina J, Li L, Lustig K, Shan B, Heyman RA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289: 1524-29.
Goldiner I, van der Velde AE, Vandenberghe KE, van Wijland MA, Halpern Z, Gilat T, Konikoff FM, et al. ABCA1-dependent but apoAI-independent cholesterol efflux mediated by fatty acid-bile acid conjugates (FABACs). Biochem J 2006; 396: 529-36.
Yu L, Hammer RE, Li-Hawkins J, von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH, et al. Disruption of Abcg5/Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Nat Acad Sci 2002; 99: 16237-42.
Hazard SE, Patel SB. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch 2006; 27: 1-8.
Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290: 1771-5.
Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK. The mechanism of Abcg5/Abcg8 in biliary cholesterol secretion in mice. J Lipid Res 2006: In press June 12.
Plosch T, Kosters A, Groen AK, Kuipers F. The ABC of hepatic and intestinal cholesterol transport. Handb Exp Pharmacol 2005; 170: 465-82.
Small DM. Role of ABC transporters in secretion of cholesterol from liver into bile. (Commentary) Proc Nat Acad Sci 2003; 100: 4-6.
Miettinen TA, Klett EL, Gylling H, Isoniemi H, Patel SB. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology 2006; 130: 542-7.
vanBerge-Henegouwen GP, Venneman NG, Portincasa P, Kosters A, van Erpecum KJ, Groen AK. Relevance of hereditary defects in lipid transport proteins for the pathogenesis of cholesterol gallstone disease. Scand J Gastroenterol Suppl 2004; 241: 60-9.
Acton S, Osgood D, Donoghue M, Corrella D, Pocovi M, Cenarro A, Mozas P, et al. Association of Polymorphisms at the SR-BI Gene Locus with Plasma Lipid Levels and Body mass Index in a White Population. Artherioscler Thromb Vasc Biol 1999; 19: 1734-43.
Johnson MS, Svensson PA, Boren J, Billig H, Carlsson LM, Carlsson B. Expression of scavenger receptor class B type I in gallbladder columnar epithelium. J Gastroenterol Hepatol 2002; 17: 713-20.
Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ. Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 1997; 17: 277-303.
Sweetser DA, Birkenmeier EH, Klisak IJ, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, et al. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem 1987; 262: 16060-71.
Pratley RE, Baier L, Pan DA, Salbe AD, Storlien L, Ravussin E, Bogardus C. Effects of an Ala54Thr polymorphism in the intestinal fatty acid-binding protein on responses to dietary fat in humans. J Lipid Res 2000; 41: 2002-8.
Levy E, Menard D, Delvin E, Stan S, Mitchell G, Lambert M, Ziv E, et al. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 2001; 276: 39679-84.
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fattyacid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 13: 785-9.
Dworatzek PDN, Hegele RA, Wolever TMS. Postprandial lipemia in subjects with the threonine 54 variant of the fatty acid– binding protein 2 gene is dependent on the type of fat ingested. Am J Clin Nutr 2004; 79: 1110-7.
Bernlohr DA, Coe NR, Simpson MA, Hertzel AV. Regulation of gene expression in adipose cells by polyunsaturated fatty acids. Adv Exp Med Biol 1997; 422: 145-56.
Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004; 279: 33586-92
Anwer MS. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 2004; 39: 581-90.
Maxfield FR, Wüstner D. Intracellular cholesterol transport. J Clin Invest 2002; 110: 891-98.
Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta 1999; 1438: 19-37.
Amigo L, Mendoza H, Castro J, Quinones V, Miquel JF, Zanlungo S. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology 2002; 36: 819-28.
Murphy EJ. Sterol carrier protein-2: not just for cholesterol any more. Mol Cell Biochem 2002; 239: 87-93.
Huang H, Gallegos AM, Zhou M, Ball JM, Schroeder F. Role of the sterol carrier protein-2 N-terminal membrane binding domain in sterol transfer. Biochemistry 2002; 41: 12149-62.
Kriska T, Levchenko VV, Korytowski W, Atshaves BP, Schroeder F, Girotti AW. Intracellular dissemination of peroxidative stress: Internalization, transport and lethal targeting of a cholesterol hyderoperoxide species by SCP-2-overexpressing hepatoma cells. J Biol Chem 2006; in press June 12.
Vila A, Levchenko VV, Korytowski W, Girotti AW. Sterol carrier protein-2-facilitated intermembrane transfer of cholesterol-and phospholipid-derived hydroperoxides. Biochemistry 2004; 43: 12592-605.
Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, et al. Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 2001; 40: 498-563.
Stolowich NJ, Petrescu AD, Huang H, Martin GG, Scott AI, Schroeder F. Sterol carrier protein-2: structure reveals function. Cell Mol Life Sci 2002; 59: 193-212.
Puglielli L, Rigotti A, Amigo L, Nunez L, Greco AV, Santos MJ, Nervi F. Modulation of intrahepatic cholesterol trafficking: evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile. Biochem J 1996; 317: 681-7.
Amigo L, Zanlungo S, Miquel JF, Glick JM, Hyogo H, Cohen DE, Rigotti A, et al. Hepatic overexpression of sterol carrier protei n-2 inhibits VLDL production and reciprocally enhances biliary lipid secretion. J Lipid Res 2003; 44: 399-407.
Ito T, Kawata S, Imai Y, Kakimoto H, Trzaskos JM, Matsuzawa Y. Hepatic cholesterol metabolism in patients with cholesterol gallstones: enhanced intracellular transport of cholesterol. Gastroenterology 1996; 110: 1619-27.
Fuchs M, Lammert F, Wang DQ, Paigen B, Carey MC, Cohen DE. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice. Biochem J 1998; 336: 33-7.
Olkkonen VM, Johansson M, Suchanek M, Yan D, Hynynen R, Ehnholm C, Jauhiainen M, et al. The OSBP-related proteins (ORPs): global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes? Biochem Soc Trans 2006; 34: 389-91.
Olkkonen VM, Levine TP. Oxysterol binding proteins: in more than one place at one time? Biochem Cell Biol 2004; 82: 87-98.
Wang P, Weng J, Anderson RGW. OSBP is a cholesterol-regulated scaffolding protein in control of ERK1/2 activation. Science 2005; 307: 1472-76.
Pelkmans L, Zerial M. Kinase-regulated quantal assemblies and kissand-run recycling of caveolae. Nature 2005; 436: 128-33.
Cheng ZJ, Deep Singh R, Marks DL, Pagano RE. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 2006; 23: 101-10.
Frank PG, Galbiati F, Razani B, Volante D, Razani B, Cohen DE, Marcel YL, et al. Influence of caveolin-1 on cellular cholesterol efflux mediated by high density lipoproteins. Am J Physiol Cell Physiol 2001; 280: C1204-14.
Le Lay S, Hajduch E, Lindsay MR, Le Liepvre X, Thiele C, Ferre P, Parton RG, et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 2006; 7: 549-61.
Pallottini V, Martini C, Cavallini G, Donati A, Bergamini E, Notarnicola M, Caruso MG, et al. Modified HMG-CoA reductase and LDLr regulation is deeply involved in age-related hypercholesterolemia. J Cell Biochem 2006; in press Jun 1.
Llaverias G, Vazquez-Carrera M, Sanchez RM, Noe V, Ciudad CJ, Laguna JC, Alegret M. Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. J Lipid Res 2004; 45: 2015-24.
Chen SH, Van Tuinen P, Ledbetter DH, Smith LC, Chan L. Human liver fatty acid binding protein gene is located on chromosome 2. Somat cell. Molec Genet 1996; 12: 303-6.
Corisco B, Liou HL, Storch J. The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes. Biochemistry 2004; 43: 3600-7.
Skrtic S, Carlsson L, Ljugberg A, Linden D, Michalik L, Wahli W, Oscarsson J. Decreased expression of peroxisome proliferator-activated receptor alpha and liver fatty acid binding protein after partial hepatectomy of rats and mice. Liver Int 2005; 25: 33-40.
Robitaille J, Brouillette C, Lemieux S, Perusse L, Gaudet D, Vohl MC. Plasma concentrations of apolipoprotein B are modulated by a gene-diet interaction effect between the LFABP T94A polymorphism and dietary fat intake in French-Canadian men. Mol Genet Metab 2004; 82: 296-303.
Ito J, Kheirollah A, Nagayasu Y, Lu R, Kato K, Yokoyama S. Apolipoprotein A-I increases association of cytosolic cholesterol and caveolin-1 with microtubule cytoskeletons in rat astrocytes. J Neurochem 2006; 97: 1034-43.
van Erpecum KJ, van Berge-Henegouwen GP. Gallstones: an intestinal disease? Gut 1999; 44: 435-38.
Srivastava RA, Srivastava N, Averna M. Dietary cholic acid lowers plasma levels of mouse and human apolipoprotein A-I primarily via a transcriptional mechanism. Eur J Biochem 2000; 267: 4272-80.
Mittal B, Mittal RD. Genetics of Gallstone Disease. J Postgrad Med 2002; 48: 149-52.
Akita H, Chiba H, Tsuchihashi K, Tsuji M, Kumagai M, Matsuno K, Kobayashi K. Cholesteryl ester transfer protein gene: two common mutations and their effect on plasma high-density lipoprotein cholesterol content. J Clin Endocr Metab 1994; 79: 1615-18.
100.Pulai JI, Neuman RJ, Groenewegen AW, Wu J, Schonfeld G. Genetic heterogeneity in familial hypobetalipoproteinemia: Linkage and nonlinkage to the apoB gene in caucasian families. American Journal of Medical Genetics 1998; 78: 79-86.
101.Han T, Jiang Z, Suo G, Zhang S. Apolipoprotein B-100 gene Xba I polymorphism and cholesterol gallstone disease. Clin Genet 2000; 57: 304-8.
102.Boerwinkle E. Utermann G. Simultaneous effects of the apolipoprotein E polymorphism on apolipoprotein E, apolipoprotein B, and cholesterol metabolism. Am J Hum Genet 1998; 42: 104-12.
103.Juvonen T, Savolainen MS, Kairaluoma MI, Lajunen LH, Humphries SE, Kesaniemi YA. Polymorphism at the apoB, apoA-1 and cholesteryl ester transfer protein gene loci in patients with gallbladder disease. J Lipid Res 1995; 36: 804-10.
104.Bertomeu A, Ros E, Zambon D, Vela M, Perez-Ayuso RM, Torgorena E, Tris M, et al. Apoliprotein E Polymorphism and Gallstones. Gastroenterology 1996; 111: 1603-10.
105.Couture P, Otvos JD, Cupples LA, Wilson PW, Schaefer EJ, Ordovas JM. Association of the A-204C polymorphism in the cholesterol 7-acylcholesterol levels in the Framingham Offspring Study. J Lipid Res 1999; 40: 1883-89.
106.Wittenburg H, Lammert F, Wang DQ, Churchill GA, Li R, Bouchard G, Carey MC, et al. Interacting QTLs for cholesterol gallstones and gallbladder mucin in AKR and SWR strains of mice. Physiol Genomics 2002; 8: 67-77.
107.Lammert F, Wang Q-H D, Paigen B, Carey C. Phenotypic characterization of Lith genes that determine susceptibility to colesterol cholelithiasis in inbred mice: integrated activities of hepatic lipid regulatory enzymes. J Lipid Res 1999; 40: 2080-90.