2006, Number 4
<< Back Next >>
salud publica mex 2006; 48 (4)
Statistical processing of non-response in transversal epidemiological studies
Carracedo-Martínez E, Figueiras A
Language: Spanish
References: 43
Page: 341-347
PDF size: 97.40 Kb.
ABSTRACT
In epidemiological surveys, non-response constitutes a great limitation due to the loss of validity and statistical power it represents, whether such a loss occurs due to partial participation (the individual fails to answer certain variables) or due to total lack of participation (the individual does not answer any variable). This paper reviews the scientific literature on the different methods to process statistic data when non-response has occurred in non-longitudinal studies, so as to counteract their effect in such studies. Most statistical methods focus on dealing with partial participation (missing data). These methods, of which there is a great variety, can be classified into two large groups: imputation and complete data. For accurate selection of the study method, it is necessary to study the data matrix beforehand, observing the missing data generation mechanism, as well as the proportion they represent of the total data.
REFERENCES
Streiner DL. The case of the missing data: methods of dealing with dropouts and other vagaries. Can J Psychiatry 2002;47:68-75.
Kim JO, Curry J. The treatment of missing data in multivariate analysis. Sociol Methods Res 1977;6:215-241.
Hunsberger S, Murria D, Davis CE, et al. Imputation strategies for missing data in school-based multicenter study: the pathways study. Stat Med 2001;20:305-316.
Abramson JW. Métodos de estudio en medicina comunitaria. Madrid: Díaz de Santos, 1990.
Asch DA, Jedrziewski MK, Christakis NA. Response rates to mail surveys published in medical journals. J Clin Epidemiol 1997;50:1129-1136.
Nielsen-Thompson N, Boyer EM. Components of nonresponse in mail surveys of dental hygienists. J Dent Hyg 1994;68:188-192.
Edwards P, Roberts I, Clarke M, et al. Increasing response rates to postal questionnaires: systematic review. BMJ 2002;324:1-9.
Eaker S, Bergström R, Bergström A, et al. Response rate to mailed epidemiologic questionnaires: a population-based randomized trial of variations in design in design and mailing routines. Am J Epidemiol 1998;147:74-82.
Baker DW, Brown J, Chan KS, et al. A telephone survey to measure communication, education, self-management, and health status for patients with heart failure: the improving chronic illness care evaluation (ICICE). J Card Fail 2005;11(1):36-42.
Argimón J, Jiménez J. Diseño de estudios descriptivos (III): estudios sobre fiabilidad de una medida. Diseño y validación de cuestionarios. Barcelona: Signo, 2003.
O´toole BI, Battistutta D, Long A, et al. A comparison of costs and data quality of three health survey methods: mail, telephone and personal home interview. Am J Epidemiol 1986;124:317-328.
Holt D, Elliot D. Methods of weighting for unit nonresponse. Statistician 1991;40:333–342.
Kalton G, Kasprzyk D. The treatment of missing survey data. Surv Methodol 1986;12:1-16.
Kessler RC, Little JA, Groves RM. Advances in strategies for minimizing and adjusting for survey nonresponse. Epidemiol Rev 1995;17:192-204.
Little RJA, Rubin DB. Statistical analysis with missing data. New York: Wiley, 2002.
Vach W, Bletner M. Biased estimation of the odds ratio in case-control studies due to the use of ad hoc methods of correcting for missing values for confounding variables. Am J Epidemiol 1991;134:895-907.
Rothman KJ, Greenland S. Modern epidemiology. 2a ed. Filadelfia: Lippincot & Wilkins, 1998.
Kneipp SM, McIntosh M. Handling missing data in nursing research with multiple imputation. Nurs Res 2001;50:384-389.
Domenech JM, Sarriá A. Análisis multivariante en ciencias de la salud. Diagnósticos de un modelo de regresión múltiple. Barcelona: Signo, 2003.
Fairclough DL. Functional assessment of cancer therapy (FACT-G): non-response to individual questions. Qual Life Res 1996;5:321-329.
Crawford SL, Tennstedt LT, Mckinlay JB. A comparison of analytic methods for non-random missingness of outcome data. J Clin Epidemiol 1995;48:209-219.
Cañizares M, Barroso K, Alfonso I. Datos incompletos: una mirada crítica para su manejo en estudios sanitarios. Gac Sanit 2004;18(1):58-63.
Weinberg CR, Moledor ES, Umbach DM, et al. Imputation for exposure histories with gaps, under an excess relative risk model. Epidemiology 1996;7:490-497.
Greenland S, Finkle W. A critical look at methods for handling covariates in epidemiologic regression analyses. Am J Epidemiol 1995;142:1255-1264.
Gmel G. Imputation of missing values in the case of a múltiple item instrument measuring alcohol consumption. Stat Med 2001;20:2369-2381.
Wang ST, Lin LY, Yu ML. A SAS macro for a simulation study of imputation methods for missing values. An application of Bebbington’s algorithm. Public Health 1998;112:129-132.
Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc 1996;91:473-489.
Schafer JL. Multiple imputation: a primer. Stat Methods Med Res 1999;8:3-15.
Zhou X. Multiple imputation in public health research. Stat Med 2001;20:1541-1549.
Kmetic A. Multiple imputation to account for missing data in a survey: estimating the prevalence of osteoporosis. Epidemiology 2002;13:437-444.
Patrician P. Focus on research methods multiple imputation for missing data. Res Nurs Health 2002;25:76-84.
Faris PD, William AG, Brant R, et al. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. J Clin Epidemiol 2002;55:184-191.
Rubin DB, Schenker N. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 1986;81:366-374.
Taylor J. Use of multiple imputation to correct for nonresponse bias in a survey of urologic symptoms among african-american men. Am J Epidemiol 2002;156:774-782.
Rubin DB. Multiple imputation for nonresponse in surveys. Nueva York: John Wiley and Sons, 1987.
Schafer J. NORM: multiple imputation of incomplete multivariate data under a normal model. Version 2.02, 1999.
Schafer. Analisis of incomplete multivariate data. Londres: Chapman and Hall, 1997.
Statistical solutions. SOLAS for missing data. Version 3.0, 2000.
Lavori P, Dawson D, Shera D. A multiple imputation strategy for clinical trials with truncation of patient data. Stat Med 1995;14:1913-1925.
Allison. Multiple imputation for missing data: a cautionary tale. Sociol Methods Res 2000;28:301-309.
Barnard J, Meng XL. Applications of multiple imputation in medical studies: from AIDS to NHANES. Stat Methods Med Res 1999;8:17-36.
Raghunathan TE. What do we do with missing data? Some options for analysis of incomplete data. Annu Rev Public Health 2004;25:99-117.
Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods 2002;7(2):147-177.