2007, Number 2
<< Back Next >>
Ann Hepatol 2007; 6 (2)
Predicted binding affinity of candidate HDV epitope: a bioinformatics study
Wiwanitkit V
Language: English
References: 19
Page: 108-110
PDF size: 40.09 Kb.
Text Extraction
Hepatitis D virus (HDV) is an RNA virus that can cause hepatitis. Development and approval of new vaccines are the hope for control of the possible emerging pandemic of this infection. Recently, the possible epitope as 174 to 195 of HDAg was mentioned. Here, the author reports the preliminary data from the computational analysis to find binding affinity of the candidate HDV epitope using new bioinformatics technique. For L-HDAg, the binding affinity for A0203, A0301, A1101, A6801 and DRB0101 are acceptable. For S-HDAg, the binding affinity for A0203, A0301, A1101, A6801 and DRB6802 are acceptable. The binding affinity for A0203 is the most for both L-HDAg and S-HDAg.
REFERENCES
Taylor JM. Hepatitis delta virus. Virology 2006; 344: 71-6.
Smedile A, Rizzetto M, Gerin JL. Advances in hepatitis D virus biology and disease. Prog Liver Dis 1994; 12: 157-75.
Karayiannis P, Saldanha J, Monjardino J, Farci P, Thomas HC. Prevention and treatment of hepatitis delta virus infection. Prog Clin Biol Res 1991; 364: 377-83.
Casey JL, Gerin JL. The woodchuck model of HDV infection. Curr Top Microbiol Immunol 2006; 307: 211-25.
Fiedler M, Roggendorf M. Immunology of HDV infection. Curr Top Microbiol Immunol 2006; 307: 187-209.
Fiedler M, Lu M, Siegel F, Whipple J, Roggendorf M. Immunization of woodchucks (Marmota monax) with hepatitis delta virus DNA vaccine. Vaccine 2001; 19: 4618-26.
Husa P, Linhartova A, Nemecek V, Husova L. Hepatitis D. Acta Virol 2005; 49: 219-25.
De Groot AS. Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 2006; 11: 203-9.
Brusic V, August JT, Petrovsky N. Information technologies for vaccine research. Expert Rev Vaccines 2005; 4: 407-17.
Huang YH, Wu JC, Hsu SC, Syu WJ. Varied immunity generated in mice by DNA vaccines with large and small hepatitis delta antigens. J Virol 2003; 77: 12980-5.
Guan P, Doytchinova IA, Zygouri C, Flower DR. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinformatics 2003; 2: 63-6.
Guan P, Hattotuwagama CK, Doytchinova IA, Flower DR. MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinformatics 2006; 5: 55-61.
Nisini R, Paroli M, Accapezzato D, Bonino F, Rosina F, Santantonio T, Sallusto F, Amoroso A, Houghton M, Barnaba V. Human CD4+ T-cell response to hepatitis delta virus: identification of multiple epitopes and characterization of T-helper cytokine profiles. J Virol 1997; 71: 2241-51.
Shiau YT, Huang YH, Wu JC, Tao MH, Syu W Jr, Chang FY, Lee SD. Analysis of humoral immunity of hepatitis D virus DNA vaccine generated in mice by using different dosage, gene gun immunization, and in vivo electroporation. J Chin Med Assoc 2006; 69: 7-13.
Huang YH, Wu JC, Tao MH, Syu WJ, Hsu SC, Chi WK, Chang FY, Lee SD. DNA-Based immunization produces Th1 immune responses to hepatitis delta virus in a mouse model. Hepatology 2000; 32: 104-10.
Flower DR, Doytchinova IA. Immunoinformatics and the prediction of immunogenicity. Appl Bioinformatics 2002; 1: 167-76.
De Groot AS, Sbai H, Aubin CS, McMurry J, Martin W. Immuno-informatics: Mining genomes for vaccine components. Immunol Cell Biol 2002; 80: 255-69.
Wiwanitkit V. Predicted epitopes of H5N1 bird flu virus by bioinformatics method: a clue for further vaccine development. Chin Med J (Engl) 2006; 119: 1760.
Finding a T-cell epitope for a melanoma vaccine by an immunomics technique. Asian Pac J Cancer Prev 2006; 7: 659-60.