2007, Number 1
<< Back Next >>
Ann Hepatol 2007; 6 (1)
Current concepts on the pathophysiology of portal hypertension
Rodríguez-Vilarrupla A, Fernández M, Bosch J, García-Pagán JC
Language: English
References: 102
Page: 28-36
PDF size: 102.81 Kb.
Text Extraction
Cirrhosis of the liver is by far the most common cause of portal hypertension in the western world. Portal hypertension is a frequent clinical syndrome, defined by a pathological increase in the portal venous pressure. When the portal pressure gradient (the difference between pressures in the portal and the inferior vena cava veins: normal value below 6 mmHg) increases above 10-12 mmHg, complications of portal hypertension can occur. Increased resistance to portal blood flow, the primary factor in the pathophysiology of portal hypertension, is in great part due to morphological changes occurring in chronic liver diseases. However, more recently a graded and reversible contraction of different elements of the porto-hepatic bed have been shown to play a role modulating intrahepatic vascular resistance which provides a rationale for the intention to reduce intrahepatic resistance and portal pressure by means of pharmacological agents. The subsequent increase in portal blood flow, as a result of the arteriolar vasodilatation of the splanchnic organs, plays a contributory role maintaining and aggravating the portal hypertensive syndrome. This splanchnic arteriolar vasodilatation is a multifactorial phenomenon, which may involve neurogenic, humoral and local mechanisms.
REFERENCES
Bosch J, Pizcueta P, Feu F, Fernandez M, Garcia-Pagan JC. Pathophysiology of portal hypertension. Gastroenterol Clin North Am 1992; 21: 1-14.
Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol 2000; 32: 141-56.
Kaneda K, Ekataksin W, Sogawa M, Matsumura A, Cho A, Kawada N. Endothelin-1-induced vasoconstriction causes a significant increase in portal pressure of rat liver: localized constrictive effect on the distal segment of preterminal portal venules as revealed by light and electron microscopy and serial reconstruction. Hepatology 1998; 27: 735-47.
Zhang JX, Pegoli W, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol 1994; 266: G624-G632.
Kawada N, Tran-Thi TA, Klein H, Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 1993; 213: 815-23.
Garcia-Pagan JC, Bosch J, Rodes J. The role of vasoactive mediators in portal hypertension. Semin Gastrointest Dis 1995; 6: 140-7.
Ballet F, Chretien Y, Rey C, Poupon R. Differential response of normal and cirrhotic liver to vasoactive agents - a study in the isolated perfused rat-liver. Journal of Pharmacology and Experimental Therapeutics 1988; 244: 283-9.
Lautt WW, Greenway CV, Legare DJ. Effect of hepatic nerves, norepinephrine, angiotensin, and elevated central venous-pressure on post-sinusoidal resistance sites and intrahepatic pressures in cats. Microvascular Research 1987; 33: 50-61.
Xing M, Insel PA. Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest 1996; 97: 1302-10.
Athari A, Hanecke K, Jungermann K. Prostaglandin F2 alpha and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology 1994; 20: 142-8.
Miyamoto T, Ogino N, Yamamoto S, Hayaishi O. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J Biol Chem 1976; 251: 2629-36.
Smith WL. Prostanoid biosynthesis and mechanisms of action. Am J Physiol 1992; 263: F181-F191.
Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; 271: 33157-60.
Graupera M, Garcia-Pagan JC, Abraldes JG, Peralta C, Bragulat M, Corominola H, Bosch J, Rodes J. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 2003; 37: 172-81.
Graupera M, Garcia-Pagan JC, Pares M, Abraldes JG, Rosello J, Bosch J, Rodes J. Cyclooxyenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J Hepatol 2003; 39: 521.
Potenza MA, Botrugno OA, De Salvia MA, Lerro G, Nacci C, Marasciulo FL, Andriantsitohaina R, Mitolo-Chieppa D. Endothelial COX-1 and -2 differentially affect reactivity of MVB in portal hypertensive rats. Am J Physiol Gastrointest Liver Physiol 2002; 283: G587-G594.
Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest 2001; 107: 1491-5.
Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987; 237: 1171-6.
Keppler D. Leukotrienes: biosynthesis, transport, inactivation, and analysis. Rev Physiol Biochem Pharmacol 1992; 121: 1-30.
Graupera M, Garcia-Pagan JC, Titos E, Claria J, Massaguer A, Bosch J, Rod SJ. 5-Lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: A possible role of cysteinyl-leukotrienes. Gastroenterology 2002; 122: 387-93.
Angus PW. Role of endothelin in systemic and portal resistance in cirrhosis. Gut 2006; 55: 1230-2.
Moller S, Gulberg V, Henriksen JH, Gerbes AL. Endothelin-1 and endothelin-3 in cirrhosis: relations to systemic and splanchnic haemodynamics. J Hepatol 1995; 23: 135-44.
Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 1996; 24: 233-40.
Reichen J, Gerbes AL, Steiner MJ, Sagesser H, Clozel M. The effect of endothelin and its antagonist Bosentan on hemodynamics and microvascular exchange in cirrhotic rat liver. J Hepatol 1998; 28: 1020-30.
Poo JL, Jimenez W, Maria MR, Bosch-Marce M, Bordas N, Morales-Ruiz M, Perez M, Deulofeu R, Sole M, Arroyo V, Rodes J. Chronic blockade of endothelin receptors in cirrhotic rats: hepatic and hemodynamic effects. Gastroenterology 1999; 116: 161-7.
Rockey DC. Vasoactive agents in intrahepatic portal hypertension and fibrogenesis: implications for therapy. Gastroenterology 2000; 118: 1261-5.
Gonzalez-Abraldes J, Albillos A, Banares R, Del Arbol LR, Moitinho E, Rodriguez C, Gonzalez M, Escorsell A, Garcia-Pagan JC, Bosch J. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology 2001; 121: 382-8.
Yang YY, Lin HC, Huang YT, Lee TY, Hou MC, Wang YW, Lee FY, Lee SD. Roles of anandamide in the hepatic microcirculation in cirrhotic rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 2006; 290: G328-G334.
Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997; 100: 2153-7.
Harrison DG. Endothelial function and oxidant stress. Clin Cardiol 1997; 20: II-7.
Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111: 1201-9.
Dixon LJ, Hughes SM, Rooney K, Madden A, Devine A, Leahey W, Henry W, Johnston GD, McVeigh GE. Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase. Am J Hypertens 2005; 18: 839-43.
Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546-51.
Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res 1995; 76: 1003-10.
Lerman A, Holmes DR, Jr, Bell MR, Garratt KN, Nishimura RA, Burnett JC, Jr. Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 1995; 92: 2426-31.
Tagawa H, Tomoike H, Nakamura M. Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 1991; 68: 330-7.
Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 1998; 28: 926-31.
Bellis L, Berzigotti A, Abraldes JG, Moitinho E, Garcia-Pagan JC, Bosch J, Rodes J. Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosis. Hepatology 2003; 37: 378-84.
Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-12.
Fevery J, Roskams T, Van de CM, Omasta A, Janssens S, Desmet V, Nevens F. NO synthase in the liver: prospects of in vivo gene transfer. Digestion 1998; 59 Suppl 2: 58-9.
Morales-Ruiz M, Cejudo-Martn P, Fernandez-Varo G, Tugues S, Ros J, Angeli P, Rivera F, Arroyo V, Rodes J, Sessa WC, Jimenez W. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 2003; 125: 522-31.
Zafra C, Abraldes JG, Turnes J, Berzigotti A, Fernandez M, Garca-Pagan JC, Rodes J, Bosch J. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 2004; 126: 749-55.
Mittal MK, Gupta TK, Lee FY, Sieber CC, Groszmann RJ. Nitric oxide modulates hepatic vascular tone in normal rat liver. Am J Physiol 1994; 267: G416-G422.
Miller DR, Collier JM, Billings RE. Protein tyrosine kinase activity regulates nitric oxide synthase induction in rat hepatocytes. Am J Physiol 1997; 272: G207-G214.
Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K, Sessa WC, Groszmann RJ. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 1999; 117: 1222-8.
Gracia-Sancho J, Laviña B, Rodriguez-Vilarrupla A, Garcia H, Bosch J, Garcia-Pagan JC. Oxidative stress reduces nitric oxide biodisponibility and may contribute to endothelial dysfunction of cirrhotic livers. J Hepatol 2006; 44(S2): S75.
Huie RE, Padmaja S. The reaction of no with superoxide. Free Radic Res Commun 1993; 18: 195-9.
Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 1983; 23: 239-57.
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840-4.
Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29-38.
Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280: C719-C741.
Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 2006; 40: 183-92.
Heistad DD. Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 2006; 26: 689-95.
Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998; 95: 9220-5.
Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 2003; 20;278: 22546-54.
Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 1998; 438: 161-4.
Hernandez-Guerra M, Garcia-Pagan JC, Turnes J, Bellot P, Deulofeu R, Abraldes JG, Bosch J. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology 2006; 43: 485-91.
Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulfhydration in liver and kidney of the rat. Biochemical Journal 1982; 206: 267-77.
Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? Faseb Journal 2002; 16: 1792-8.
Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 2005; 42: 539-48.
Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 2004; 126: 886-94.
Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. Journal of Hepatology 2005; 43: 98-103.
Gomis R, Fernandez-Alvarez J, Pizcueta P, Fernandez M, Casamitjana R, Bosch J, Rodes J. Impaired function of pancreatic islets from rats with portal hypertension resulting from cirrhosis and partial portal vein ligation. Hepatology 1994; 19: 1257-61.
Pizcueta MP, Garcia-Pagan JC, Fernandez M, Casamitjana R, Bosch J, Rodes J. Glucagon hinders the effects of somatostatin on portal hypertension. A study in rats with partial portal vein ligation. Gastroenterology 1991; 101: 1710-5.
Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependent vasoconstrictors in portal- hypertensive and control rats. Gastroenterology 2001; 120: 975-83.
Garcia-Pagan JC, Escorsell A, Moitinho E, Bosch J. Influence of pharmacological agents on portal hemodynamics: basis for its use in the treatment of portal hypertension. Semin Liver Dis 1999; 19: 427-38.
Domenicali M, Ros J, Fernandez-Varo G, Cejudo-Martin P, Crespo M, Morales-Ruiz M, Briones AM, Campistol JM, Arroyo V, Vila E, Rodes J, Jimenez W. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut 2005; 54: 522-7.
Moezi L, Gaskari SA, Liu H, Baik SK, Dehpour AR, Lee SS. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. Br J Pharmacol 2006; 149: 898-908.
Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J, Wang L, Mirshahi F, Khanolkar AD, Makriyannis A, Urbaschek R, Garcia N Jr, Sanyal AJ, Kunos G. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med 2001; 7: 827-32.
Ros J, Claria J, To-Figueras J, Planaguma A, Cejudo-Martin P, Fernandez-Varo G, Martin-Ruiz R, Arroyo V, Rivera F, Rodes J, Jimenez W. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 2002; 122: 85-93.
Pak JM, Lee SS. Vasoactive effects of bile-salts in cirrhotic rats - in-vivo and in-vitro studies. Hepatology 1993; 18: 1175-81.
Genecin P, Polio J, Colombato LA, Ferraioli G, Reuben A, Groszmann RJ. Bile-acids do not mediate the hyperdynamic circulation in portal hypertensive rats. American Journal of Physiology 1990; 259: G21-G25.
Fernandez M, Casadevall M, Schuligoi R, Pizcueta P, Panes J, Barrachina MD, Donnerer J, Pique JM, Esplugues JV, Bosch J. Neonatal capsaicin treatment does not prevent splanchnic vasodilatation in portal-hypertensive rats. Hepatology 1994; 20: 1609-14.
Pizcueta P, Pique JM, Fernandez M, Bosch J, Rodes J, Whittle BJ, Moncada S. Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology 1992; 103: 1909-15.
Pizcueta MP, Pique JM, Bosch J, Whittle BJ, Moncada S. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol 1992; 105: 184-90.
Wiest R, Hori N, Cadelina G, Das S, Groszmann RJ. Increased nitric oxide release in response to vasoconstrictors in the superior mesenteric arterial bed of cirrhotic rats. Hepatology 1997; 26: 1045.
Guarner C, Soriano G, Tomas A, Bulbena O, Novella MT, Balanzo J, Vilardell F, Mourelle M, Moncada S. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology 1993; 18: 1139-43.
Sieber CC, Lopez-Talavera JC, Groszmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology 1993; 104: 1750-4.
Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest 1999; 104: 1223-33.
Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol 1999; 276: G1043-G1051.
Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ, Sessa WC. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol 2002; 282: H2084-H2090.
Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998; 392: 821-4.
Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann RJ, Sessa WC. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol 1999; 277: G463-G468.
Fernandez M, Bonkovsky HL. Increased heme oxygenase-1 gene expression in liver cells and splanchnic organs from portal hypertensive rats. Hepatology 1999; 29: 1672-9.
Fernandez M, Lambrecht RW, Bonkovsky HL. Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulating mesenteric vascular reactivity. Journal of Hepatology 2001; 34: 812-7.
Fernandez M, Garcia-Pagan JC, Casadevall M, Mourelle MI, Pique JM, Bosch J, Rodes J. Acute and chronic cyclooxygenase blockage in portal-hypertensive rats: influence in nitric oxide biosynthesis. Gastroenterology 1996; 110: 1529-35.
Cheng YQ, Ndisang JF, Tang GH, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American Journal of Physiology-Heart and Circulatory Physiology 2004; 287: H2316-H2323.
Taguchi T, Awata S, Nishioka M, Arakawa Y, Shiraishi N, Ryu S, Kumazawa H, Takano Y, Nakayama K, Yagyu K, Kawamura M, Sato A. Elevation of cystathionine gamma-lyase activity in the serum of rats treated with a single-dose of carbon-tetrachloride. Industrial Health 1995; 33: 199-205.
Sitzmann JV, Bulkley GB, Mitchell MC, Campbell K. Role of prostacyclin in the splanchnic hyperemia contributing to portal-hypertension. Annals of Surgery 1989; 209: 322-7.
Sitzmann JV, Campbell KA, Wu YP, Cameron JL. Effect of portosystemic shunting on Pgi2 and glucagon-levels in humans. Annals of Surgery 1993; 217: 248-52.
Hamilton G, Phing RC, Hutton RA, Dandona P, Hobbs KE. The relationship between prostacyclin activity and pressure in the portal vein. Hepatology 1982; 2: 236-42.
Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989; 259: 315-24.
Guarner C, Soriano G, Such J, Teixido M, Ramis I, Bulbena O, Rosello J, Guarner F, Gelpi E, Balanzo J, . Systemic prostacyclin in cirrhotic patients. Relationship with portal hypertension and changes after intestinal decontamination. Gastroenterology 1992; 102: 303-9.
Bruix J, Bosch J, Kravetz D, Mastai R, Rodes J. Effects of prostaglandin inhibition on systemic and hepatic hemodynamics in patients with cirrhosis of the liver. Gastroenterology 1985; 88: 430-5.
Sitzmann JV, Li SS, Adkinson NF. Evidence for role of prostacyclin as a systemic hormone in portal hypertension. Surgery 1991; 109: 149-53.
Sitzmann JV, Li SS, Lin PW. Prostacyclin mediates splanchnic vascular response to norepinephrine in portal hypertension. J Surg Res 1989; 47: 208-11.
Wu YP, Li SS, Campbell KA, Sitzmann JV. Modulation of splanchnic vascular sensitivity to angiotensin II. Surgery 1991; 110: 162-8.
Garcia-Tsao G, Groszmann RJ, Fisher RL, Conn HO, Atterbury CE, Glickman M. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology 1985; 5: 419-24.
Rigau J, Bosch J, Bordas JM, Navasa M, Mastai R, Kravetz D, Bruix J, Feu F, Rodes J. Endoscopic measurement of variceal pressure in cirrhosis: correlation with portal pressure and variceal hemorrhage. Gastroenterology 1989; 96: 873-80.
Groszmann RJ, Garcia-Tsao G, Makuch R, Bosch J, Escorsell A, Garcia-Pagan JC, Grace N, Matloff DS, Burroughs A, Patch L. Multicenter randomized placebo-controlled trial of non-selective beta-blockers in the prevention of the complications of portal hypertension: Final results and identification of a predictive factor. Hepatology 2003; 38: 206A.
Kroeger RJ, Groszmann RJ. Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model. Hepatology 1985; 5: 97-101.
Colombato LA, Albillos A, Groszmann RJ. The role of central blood volume in the development of sodium retention in portal hypertensive rats. Gastroenterology 1996; 110: 193-8.