2002, Number 3
<< Back Next >>
Ann Hepatol 2002; 1 (3)
From lipid secretion to cholesterol crystallization in bile. Relevance in cholesterol gallstone disease
Portincasa P, Moschetta A, Palasciano G
Language: English
References: 82
Page: 121-128
PDF size: 196.80 Kb.
Text Extraction
Failure of cholesterol homeostasis in the body can lead to cholesterol gallstone disease, the most common and costly gastrointestinal disease. The
primum movens in cholesterol gallstone formation is the hypersecretion of hepatic cholesterol; this condition leads to bile chronically surpersaturated with cholesterol which is prone to rapid precipitation as cholesterol crystals in the gallbladder. Essential topics reviewed here deal with pathways of biliary lipid secretion, cholesterol solubilization and crystallization in bile, according to recent advances. Main
in vivo events in cholesterol gallstone disease are also described.
REFERENCES
Sleisenger MH, Fordtran JS. Gastrointestinal Disease: pathophysiology, diagnosis, management. Philadelphia: W.B. Saunders, 1993.
Ingelfinger FJ. Digestive disease as a national problem. V. Gallstones. Gastroenterology 1968: 55: 102-4.
Attili AF, Carulli N, Roda E, et al. Epidemiology of gallstone disease in Italy: prevalence data of the multicenter italian study on cholelithiasis (M.I.C.O.L.). Am J Epidemiology 1995: 141: 158-65.
Bills PM, Lewis D. A structural study of gallstones. Gut 1975: 16: 630-7.
Sherlock S, Dooley J. Diseases of the liver and biliary system. Oxford: Blackwell Science, 2002.
Holan KR, Holzbach RT, Hermann RE, et al. Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 1979: 77: 611-7.
Carey MC. Formation of cholesterol gallstones: the new paradigm. In: Paumgartner G, Stiehl A, Gerok W, eds. Trends in bile acid research. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1989: 259-81.
Wang DQ, Paigen B, Carey MC. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical-chemistry of gallbladder bile. Journal of Lipid Research 1997: 38: 1395-411.
LaMont JT, Carey MC. Cholesterol gallstone formation. 2. Pathobiology and pathomechanics. Prog Liver Dis 1992: 10: 165-91.
Marinelli RA, LaRusso NF. Solute and water transport pathways in cholangiocytes. Semin Liver Dis 1996: 16: 221-9.
Marinelli RA, LaRusso NF. Aquaporin water channels in liver: their significance in bile formation. Hepatology 1997: 26: 1081-4.
Haussinger D, Schmitt M, Weiergraber O, et al. Short-term regulation of canalicular transport. Semin Liver Dis 2000: 20: 307-21.
Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 1991: 14: 551-66.
Meier PJ, Eckhardt U, Schroeder A, et al. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 1997: 26: 1667-77.
Childs S, Yeh RL, Georges E, et al. Identification of a sister gene to P-glycoprotein. Cancer Res 1995: 55: 2029-34.
Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998: 273: 10046-50.
Taniguchi K, Wada M, Kohno K, et al. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 1996: 56: 4124-9.
Ishikawa T, Ali-Osman F. Glutathione-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 1993: 268: 20116-25.
Muller M, Jansen PL. Molecular aspects of hepatobiliary transport. Am J Physiol 1997: 272: G1285-G1303.
Gros P, Ben Neriah YB, Croop JM, et al. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 1986: 323: 728-31.
Roninson IB, Chin JE, Choi KG, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 1986: 83: 4538-42.
Smit JJM, Schinkel AH, Oude Elferink RPJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993: 75: 451-62.
Barnwell SG, Tuchweber B, Yousef IM. Biliary lipid secretion in the rat during infusion of increasing doses of unconjugated bile acids. Biochim Biophys Acta 1987: 922: 221-33.
Verkade HJ, Vonk RJ, Kuipers F. New insights into the mechanism of bile acid-induced biliary lipid secretion. Hepatology 1995: 21: 1174-89.
Crawford JM, Möckel GM, Crawford AR, et al. Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. Journal of Lipid Research 1995: 36: 2147-63.
Oude Elferink RPJ, Ottenhoff R, van Wijland M, et al. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. Journal of Lipid Research 1996: 37: 1065-75.
Oude Elferink RPJ, Tytgat GNJ, Groen AK. The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB Journal 1997: 11: 19-28.
Elferink RO, Groen AK. Genetic defects in hepatobiliary transport. Biochim Biophys Acta 2002: 1586: 129-45.
Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999: 22: 347-51.
Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999: 22: 336-45.
Marcil M, Brooks-Wilson A, Clee SM, et al. Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 1999: 354: 1341-6.
Groen AK, Bloks VW, Bandsma RH, et al. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001: 108: 843-50.
Lee MH, Lu K, Hazard S, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 2001: 27: 79-83.
Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000: 290: 1771-5.
Hay DW, Cahalane MJ, Timofeyeva N, et al. Molecular species of lecithins in human gallbladder bile. Journal of Lipid Research 1993: 34: 759-68.
Mazer NA, Carey MC. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry 1983: 22: 426-42.
Sömjen GJ, Gilat T. A non-micellar mode of cholesterol transport in human bile. FEBS Lett 1983: 156: 265-8.
Ahrendt SA, Fox-Talbot MK, Kaufman HS, et al. Cholesterol nucleates rapidly from mixed micelles in the prairie dog. Biochim Biophys Acta 1994: 1211: 7-13.
Wang DQ, Carey MC. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing system. Journal of Lipid Research 1996: 37: 606-30.
Donovan JM, Jackson AA. Rapid determination by centrifugal ultrafiltration of inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile: influence of Donnan equilibrium effects. Journal of Lipid Research 1993: 34: 1121-9.
Donovan JM, Jackson AA, Carey MC. Molecular species composition of inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance. Journal of Lipid Research 1993: 34: 1131-40.
Donovan JM, Timofeyeva N, Carey MC. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. Journal of Lipid Research 1991: 32: 1501-12.
Moschetta A, Eckhardt ER, De Smet MB, et al. Accurate separation of vesicles, micelles and cholesterol crystals in supersaturated model biles by ultracentrifugation, ultrafiltration and dialysis. Biochim Biophys Acta 2001: 1532: 15-27.
Konikoff FM, Chung DS, Donovan JM, et al. Filamentous, helical and tubular microstructures during cholesterol crystallization from bile. Evidence that biliary cholesterol does not nucleate classic monohydrate plates. J Clin Invest 1992: 90: 1156-61.
Moschetta A, vanBerge-Henegouwen GP, Portincasa P, et al. Cholesterol crystallization in model biles. Effects of bile salt and phospholipid species composition. Journal of Lipid Research 2001: 42: 1273-81.
Portincasa P, Venneman NG, Moschetta A, et al. Quantitation of cholesterol crystallization from supersaturated model bile. J Lipid Res 2002: 3: 604-10.
Nishioka T, Tazuma S, Yamashita G, et al. Quantitative assessment of comparative potencies of cholesterol-crystal-promoting factors: relation to mechanistic characterization. Biochemical Journal 1998: 332: 343-50.
Ringel Y, Sömjen GJ, Konikoff FM, et al. Increased saturation of the fatty acids in the sn-2 position of phospholipids reduces cholesterol crystallization in model biles. Biochim Biophys Acta 1998: 1390: 293-300.
Halpern Z, Moshkowitz M, Laufer H, et al. Effect of phospholipids and their molecular species on cholesterol solubility and nucleation in human and model biles. Gut 1993: 34: 110-5.
van Erpecum KJ, Carey MC. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability. Biochim Biophys Acta 1997: 1345: 269-82.
Pakula R, Konikoff FM, Rubin M, et al. The effects of dietary phospholipids enriched with phosphatidylethanolamine on bile and red cell membrane lipids in humans. Lipids 1996: 31: 295-303.
van Erpecum KJ, Portincasa P, Gadellaa M, et al. Effects of bile salt hydrophobicity on nucleation behaviour of cholesterol crystals in model bile. Eur J Clin Invest 1996: 26: 602-8.
Nishioka T, Tazuma S, Yamashita G, et al. Partial replacement of bile salts causes marked changes of cholesterol crystallization in supersaturated model bile systems. Biochemical Journal 1999: 340: 445-51.
van Erpecum KJ, Portincasa P, Eckhardt E, et al. Ursodeoxycholic acid reduces protein levels and their nucleation-promoting activity in gallbladder bile. Gastroenterology 1996: 110: 1225-37.
Gilat T, Leikin-Frenkel A, Goldiner L, et al. Arachidyl amido cholanoic acid (Aramchol) is a cholesterol solubilizer and prevents the formation of cholesterol gallstones in inbred mice. Lipids 2001: 36: 1135-40.
Gilat T, Leikin-Frenkel A, Goldiner I, et al. Dissolution of cholesterol gallstones in mice by the oral administration of a fatty acid bile acid conjugate. Hepatology 2002: 35: 597-600.
Maton PN, Ellis HJ, Higgins MJP, et al. Hepatic HMG-CoA reductase in human cholelithiasis: effects of chenodeoxycholic and ursodeoxycholic acids. Eur J Clin Invest 1980: 10: 325-32.
Portincasa P, van Erpecum KJ, Jansen A, et al. Behavior of various cholesterol crystals in bile from gallstone patients. Hepatology 1996: 23: 738-48.
Shoda J, He BF, Tanaka N, et al. Increased deoxycholate in supersaturated bile of patients with cholesterol gallstones disease and its correlation with de novo syntheses of cholesterol and bile acids in liver, gallbladder emptying, and small intestinal transit. Hepatology 1995: 21: 1291-302.
Shiffman ML, Shamburek RD, Schwartz CC, et al. Gallbladder mucin, arachidonic acid, and bile lipids in patients who develop gallstones during weight reduction. Gastroenterology 1993: 105: 1200-8.
van Erpecum KJ, Wang DQH, Lammert F, et al. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: soluble pronucleating proteins in gallbladder and hepatic biles. Journal of Hepatology 2001: 35: 444-51.
Portincasa P, Di Ciaula A, Baldassarre G, et al. Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. Journal of Hepatology 1994: 21: 430-40.
van der Werf SDJ, vanBerge-Henegouwen GP, Palsma DM, et al. Motor function of the gallbladder and cholesterol saturation of duodenal bile. Neth J Med 1987: 30: 160-71.
Pomeranz IS, Shaffer EA. Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology 1985: 88: 787-91.
Jazrawi RP, Pazzi P, Petroni ML, et al. Postprandial gallbladder motor function: refilling and turnover of bile in health and cholelithiasis. Gastroenterology 1995: 109: 582-91.
Moschetta A, Stolk MF, Rehfeld JF, et al. Severe impairment of postprandial cholecystokinin release and gall- bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther 2001: 15: 181-5.
Shulz M, Hanisch E, Guldutuna S. In-vitro-kontraktilitatsverhalten humaner muskulatur von gallenblasen mit und ohne steinerkrankung -Relevanz des prostaglandin-systems fur die CCK-regulierte motorik. Z Gastroenterol 1993: 31: 376-87.
Portincasa P, Minerva F, Moschetta A, et al. Review article: in vitro studies of gall-bladder smooth muscle function. Relevance in cholesterol gallstone disease. Aliment Pharmacol Ther 2000: 14 Suppl 2: 19-26.
van Erpecum KJ, vanBerge-Henegouwen GP. Gallstones: an intestinal disease? Gut 1999: 44: 435-8.
Stolk MF, van Erpecum KJ, Peeters TL, et al. Interdigestive gallbladder emptying, antroduodenal motility, and motilin release patterns are altered in cholesterol gallstone patients. Dig Dis Sci 2001: 46: 1328-34.
Marcus SN, Heaton KW. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile: three inter-related factors. Gut 1986: 27: 550-8.
Attili AF, Capocaccia R, Carulli N, et al. Factors associated with gallstone disease in the MICOL experience. Hepatology 1997: 26: 809-18.
Van der Linden W, Westlin N. The familial occurrence of gallstone disease. II. Occurrence in husbands and wifes. Acta Genet Basel 1966: 16: 377-82.
Van der Linden W, Lindelof G. The familial occurrence of gallstone disease. Acta Genet Basel 1965: 15: 159-64.
Danzinger RG, Gordon H, Schoenfield LJ, et al. Lithogenic diet in siblings of young women with cholelithiasis. Mayo Clin Proc. 1972: 47: 762-6.
Gilat T, Feldman C, Halpern Z, et al. An increased familial frequency of gallstones. Gastroenterology 1983: 84: 242-6.
Van der Linden W, Simonson N. Familial occurrence of gallstone disease. Incidence in parents of young sisters. Human Heredity 1973: 23: 123-7.
Kesaniemi YA, Koskenvuo M, Vuoristo M, et al. Biliary lipid composition in monozygotic and dizygotic pairs of twins. Gut 1989: 30: 1750-6.
Shoda J, Tanaka N, Matsuzaki Y, et al. Microanalysis of bile acid composition in intrahepatic calculi and its etiological significance. Gastroenterology 1991: 101: 821-30.
Lammert F, Carey MC, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map. Gastroenterology 2001: 120: 221-38.
Moschetta A, vanBerge-Henegouwen GP, Portincasa P, van Erpecum KJ, Palasciano G, van Erpecum KJ. Differential distribution of sphyngomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for lipid secretion. In: vanBerge-Henegouwen GP, Keppler D, Leushner U, Paumgartner G, Stiehl A, eds. Biology of bile acids in health and disease. Dordrecht: Kluwer Academic Publishers, 2001: 121-7.
Chung DS, Benedek GB, Konikoff FM, et al. Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. Proc Natl Acad Sci USA 1993: 90: 11341-5.