2006, Number 4
<< Back Next >>
Bioquimia 2006; 31 (4)
Molecular aspects and prospective therapies in Parkinson’s disease
Hernández-Montiel HL
Language: Spanish
References: 133
Page: 146-158
PDF size: 713.78 Kb.
ABSTRACT
Parkinson’s disease is the most common neurodegenerative movement disorder and it is characterized by a progressive loss of dopaminergic neurons located in the substantia
nigra pars compacta. The main obstacle to develop neuroprotective and restorative therapies has been a limited understanding of the key molecular events causing neurodegeneration. In the past few years with the development of new methodological techniques, the knowledge about the physiology of this disease has increased, favoring the development of new preventive therapies. This review summarizes physiopathological aspects in Parkinson´s disease, including genetics to environmental factors that might promote dopaminergic dysfunction and death. In the same way, it focuses in the development of new therapies to reduce the evolution of the disease in carrier patients avoiding arise of new cases, through neuroprotective measures.
REFERENCES
Gelb D, Oliver E, Gilman S. Diagnostic criteria for Parkinson’s disease. Arch Neurol 1999; 56: 33-39.
Dunnett S, Björklund A. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 1999; 399 s1: A32-A39.
Forno L. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996; 55: 259-272.
Uhl G, Hedreen J, Price D. Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 1985; 35: 1215-1218.
Bryant P, Geis C, Moroz A, O´Nelly B, Bogey R. Stroke and neurodegenerative disorders. 4. Neurodegenerative disorders. Arch Phys Med Rehabil 2004; 85(S1): S21-S33.
Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59: 1609-1623.
Turrens J, Alexandre A, Lehninger A. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985; 237: 408-414.
Beckman J, Crow J. Pathological implications of nitric oxide superoxide and peroxynitrite formation. Biochem Soc Trans 1993; 21: 330-334.
Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin J, Smith C, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298: 431-437.
Fitzmaurice P, Ang L, Guttman M, Rajput A, Furukawa Y, Kish S. Nigral glutathione deficiency is not specific for idiopathic Parkinson’s disease. Mov Disord 2003; 18: 969-976.
Reichmann H, Janetzky B. Mitochondrial dysfunction –a pathogenetic factor in Parkinson’s disease. J Neurol 2000; 247 S2: 1163-1168.
Schapira A, Cooper J, Dexter D, Jenner P, Clark J, Marsden C. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 8649: 1269.
Arai H, Furuya T, Mizuno Y, Mochizuki H. Inflammation and infection in Parkinson’s disease. Histol Histopathol 2006; 21: 673-678.
Langston J, Ballard P, Tetrud G, Irwin J. Chronic Parkinsonism in humans due to a product of a meperidine-analog synthesis. Science 1983; 4587: 979-980.
Dauer W, Przedborski S. Parkinson’s Disease: mechanisms and models. Neuron 2003; 39: 889-909.
Gu M, Cooper J, Taanman J, Schapira A. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 1998; 44: 177-186.
Swerdlow R, Parks J, Miller S, Tuttle J, Trimmer P, Sheehan J, et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 1996; 40: 663-671.
Swerdlow R. Mitochondrial DNA-related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 2002; 126: 271-280.
Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2: 492-501.
Dawson T, Mandir A, Lee M. Animals model of PD: pieces of the same puzzle? Neuron 2002; 35: 219-222.
Dawson T, Dawson V. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003; 302: 819-822.
Giasson B, Lee V. Are ubiquitination pathways central to Parkinson’s disease? Cell 2003; 114: 1-8.
Jenner P, Olanow C. Understanding cell death in Parkinson’s disease. Ann Neurol 1998; 44 s1: 572-584.
Zhang Y, Dawson V, Dawson T. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000; 7: 240-250.
Warner T, Schapira A. Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 2003; 53 s3: S16-S25.
Riess O, Jakes R, Kruger R. Genetic dissection of familial Parkinson’s disease. Mol Med Today 1998; 10: 438-444.
Fleming S, Fernagut P, Chesselet M. Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2005; 2: 495-503.
Lim K, Dawson V, Dawson T. The cast of molecular characters in Parkinson’s disease. Ann N Y Acad Sci 2003; 991: 80-92.
Chung K, Dawson V, Dawson T. New insights into Parkinson’s disease. J Neurol 2003; 250(S3): 15-24.
Manning-Bog A, Mc Cormack A, Uversky V, Fink A, Di Monte D. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha synuclein. J Biol Chem 2002; 277: 1641-1644.
Sherer T, Betarbet J, Greenamyre J. Environment, mitochondrial and Parkinson’s disease. Neuroscientist 2002; 8: 192-197.
Sherer T, Kim J, Betarbet J, Greenamyre J. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003; 179: 9-16.
Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nature Rev Neurosci 2003; 4: 365-275.
Peng J, Xo M, Stevenson F, Hsu M, Andersen J. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 2004; 279; 32626-32632.
Paolini M, Sapone A, González F. Parkinson’s disease, pesticides and individual vulnerability. Trends Pharmacol Sci 2004; 25: 124-129.
Zhu B. CNS dopamine oxidation and catechol-O-methyltransferase importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson’s disease. Int J Mol Med 2004; 13: 343-353.
Henchcliffe C, Schumacher H, Burgut F. Recent advances in Parkinson’s disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother 2005; 5(6): 811-821.
Nagatsu T, Ichinose H. Molecular biology of catecholamine-related enzymes in relation to Parkinson’s disease. Cell Mol Neurobiol 1999; 19: 5766.
Barcia C, Fernández Barreiro F, Poza M, Herrero M. Parkinson’s disease and inflammatory changes. Neurotox Res 2003; 5: 411-418.
Hartmann A, Hunot S, Hirsch E. Inflammation and dopaminergic neuronal loss in Parkinson’s disease: a complex matter. Exp Neurol 2003; 184: 561-564.
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch E. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 1994; 172: 151-154.
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from Parkinsonism patients. Neurosci Lett 1994; 165: 208-210.
Hunot S, Dugas N, Faucheux B, Hartmann A, Jardieu M, Debre P, et al. Fc epsilonRII/CD23 is expressed in Parkinson’s disease and induces in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19: 3440-3447.
Hurley S, O´Banion M, Song D, Arana F, Olschowka J, Haber S. Microglial response is poorly correlated with neurodegeneration following chronic, low dose MPTP administration in monkeys. Exp Neurol 2003; 184: 659-668.
Mirjany M, Ho L, Pasinetti G. Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 2002; 301: 494-500.
Adams J, Collaco-Moraes Y, de Belleroche T. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 1996; 66: 6-13.
Tocco G, Freirer-Moar S, Schreiber T, Sakhi S, Aisen P, Pasinetti G. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol 1997; 144: 339-349.
Ho L, Osaka H, Aisen P, Pasinetti G. Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol 1998; 89: 142-149.
Planas A, Soriano M, Justicin C, Rodríguez-Farre E. Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neurosci Lett 1999; 275: 141-144.
Wersinger C, Sidhu A. An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem 2006; 13: 591-602.
Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 2005; 193: 279-90.
Plaitakis A, Shashidharan P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 2000; 247(S2): 1125-1135.
Rego A, Santos M, Oliveira C. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinals cells. Neurochem Int 2000; 36: 159-166.
Sugawara T, Noshita N, Lewén A, Gasche Y, Ferrand-Drake M, Fujimura M, et al. Overexpression of cooper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 2002; 22: 209-217.
Mattson M. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 2004; 1012: 37-50.
Grünblatt E, Mandel S, Berkuzki T, Youdim M. Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord 1999; 14: 612-618.
Youdim M, Stephenson G, Shachar D. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators. Ann N Y Acad Sci 2004; 1012: 306-325.
Beal M. Experimental models of Parkinson’s disease. Nat Rev Neurosci 2001; 2: 325-334.
Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005; 2: 484-494.
Singer T, Castagnoli N, Ramsay R, Trevor A. Biochemical events in the development of parkinsonism induced by MPTP. J Neurochem 1987; 49: 1-8.
Zigmond M, Stricker E. Animal models of Parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 1989; 31: 1-79.
Beal M. Mitochondria, oxidative damage and inflammation in Parkinson’s disease. Ann N Y Acad Sci 2003; 991:120-131.
Eberhardt O, Schulz J. Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson’s disease. Toxicol Lett 2003; 139: 135-151.
Bindoff L, Birch-Martin M, Cartlidge N, Parker W, Turnbull D. Mitochondrial function in Parkinson’s disease. Lancet 1989; 1: 49.
Schapira A, Cooper J, Dexter D, Clark J, Jenner P, Marsden C. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54: 823-827.
Mann V, Cooper J, Krige F, Daniel S, Schapira A, Marsden C. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992; 115: 333-342.
Janetzky B, Hauck S, Youdim M, Riederer P, Jellinger K, Pantucek F, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 1994; 169: 126-128.
Klivenyi P, Andreassen O, Ferrante R, Lancelot E, Reif D, Beal M. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport 2000; 11: 1265-1268.
Hartley A, Stone J, Heron C, Cooper J, Schapira A. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 1994; 63: 1987-1990.
Tatton N, Nish S. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labeling and acridine orange staining. Neuroscience 1997; 77: 1037-1048.
Jackson-Lewis V, Jakowec M, Burke R, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995; 4: 257-269.
Jordan J, Cena V, Prehn J. Mitochondrial control of neuron death and its role in neurodegenerative disorders. J Physiol Biochem 2003; 59: 129-141.
Du Y, Dodel R, Bales K, Jemmerson R, Hamilton-Byrd E, Paul S. Involvement of a caspase-3-like cysteine protease in 1-methyl-4-pyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 1997; 69: 1382-1388.
Robinson S, Freeman P, Moore C, Touchon J, Krentz L, Meshul C. Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 2003; 180: 73-86.
Eberhardt O, von Coellin R, Kügler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, et al. Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 2000; 20: 9126-9134.
Rego A, Oliveira C. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 2003; 28: 1563-1574.
Chen L, Yung K, Chan Y. Neurokinin peptides and neurokinin receptors as potential therapeutic intervention targets of basal ganglia in the prevention and treatment of Parkinson’s disease. Curr Drug Targets 2004; 5: 197-206.
Schapira A, Olanow C. Neuroprotection in Parkinson’s disease: mysteries, myths, and misconceptions. JAMA 2004; 291: 358-364.
Mandel S, Grunblatt E, Riederer P, Gerlach M, Levites Y, Youdim M. Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 2003; 17: 729-762.
Brooks D. Neuroimaging in Parkinson’s disease. J Am Soc Exp Neuro Ther 2004; 1: 243-254.
Tapia-Núñez P, Chaná-Cuevas P. Diagnóstico de la enfermedad de Parkinson. Rev Neurol 2004; 38: 61-67.
Wolters E, Francot C, Bergmans P, Winogrodzka A, Booji J, Berendse H, et al. Preclinical (premotor) Parkinson’s disease. J Neurol 2000; 247(S2): 11103-11109.
Acton P, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 2005; 49(4): 349-360.
Basma A, Morris E, Nicklas W, Seller H. L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 1995; 64: 825-832.
Dexter D, Carter C, Wells F, Javoid-Agid F, Agid Y, Lees A, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52: 381-389.
Li C, Werner P, Cohen G. Lipid peroxidation in brain: interactions of L-dopa/dopamine with ascorbate and iron. Neurodegeneration 1995; 4: 147-153.
Tanaka M, Sotomatsu A, Kanai H, Hirai S. Dopa and dopamine cause cultured neuronal death in the presence of iron. J Neurol Sci 1991; 101: 198-203.
Ziv I, Jancovic J, Rowe D, Xie W, Appel S, Lee W. Neuroprotection by pramipexole against dopa. Life Sci 1999; 64: 1275-1285.
Jones D, Gunasekar P, Borowitz J, Isom G. Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells. J Neurochem 2000; 74: 2296-2304.
Doggrell S. Recent important trials of pharmacotherapy in Parkinson’s disease. Expert Opin Pharmacother 2005; 6: 1025-1028.
Fahn S. Is levodopa toxic? Neurology 1996; 47: S184-S195.
Oh J, Chase T. Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson’s disease. Amino Acids 2002; 23: 133-139.
Buhmann C, Arlt S, Kontush A, Möller-Bertram T, Sperber S, Oechsner M, et al. Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by antiparkinsonian medication. Neurobiol Dis 2004; 15: 160-170.
Suchowersky O, Gronseth G, Perlmutter J, Reich S, Zesiewicz T, Weiner W. Practice parameter: neuroprotective strategies and alternative therapies for Parkinson's disease (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 66: 976-982.
Jiménez-Jiménez F, Molina J, de Bustos F, García-Redondo A, Gómez-Escamilla C, Martínez-Salio A, et al. Serum levels of coenzyme Q10 in patients with Parkinson’s disease. J Neural Transm 2000; 107: 177-181.
Matsubara T, Azuma T, Yoshida S, Tamagami T. Serum coenzyme Q10 level in Parkinson syndrome. In: Folkers, K., eds. Biochemical and clinical aspects of coenzyme Q. Japón: Elsevier Science, 1991: 159-166.
Götz M, Gerstner A, Harth R, Dirr A, Janetzky B, Kuhn W, et al. Altered redox of state of platelet coenzyme Q10 in Parkinson’s disease. J Neural Transm 2000; 107: 41-48.
Weber C, Ernst M. Antioxidants, supplements, and Parkinson’s disease. Ann Pharmacother 2006; 40: 935-938.
Kedar N. Can we prevent Parkinson’s and Alzheimer’s disease? J Postgrad Med 2003; 49: 236-245.
Mayo J, Sainz R, Tan D, Antolin I, Rodriguez C, Reiter R. Melatonin and Parkinson’s disease. Endocrine 2005; 27: 169-78.
Liu Y, Qin L, Li G, Zhang W, An L, Liu B, et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 2003; 305: 212-218.
Zhang W, Wang T, Qin L, Gao H, Wilson B, Ali S, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 2004; 18: 589-591.
Przuntek H. Non-dopaminergic therapy in Parkinson’s disease. J Neurol 2000; 247(S2): 1119-1124.
Calon F, Dridi M, Hornykiewicz O, Bedart P, Rajput A, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 2004; 127: 1075-1084.
Xiao Y, Fu J, Dong Z, Yang J, Zeng F, Zhu L, et al. Neuroprotective mechanism of modafinil on Parkinson disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Acta Pharmacol Sin 2004; 25: 301-305.
Wang W, Shi L, Xie Y, Ma C, Li W, Su X, et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 2004; 48: 195-202.
Teismann P, Vila M, Choi D, Tieu K, Wu D, Jackson-Lewis V, et al. COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 2003; 991: 272-277.
Grünblatt E, Mandel S, Youdim M. MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J Neurol 2000; 247(S2): 1195-1202.
Kirik D, Georgievska B, Björklund A. Localized striatal delivery of GDNF as a treatment for Parkinson’s disease. Nat Neurosci 2004; 7: 105-110.
Lin L, Doherty D, Lile J, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130-1132.
Kholodilov N, Yarygina O, Frances T, Zhang H, Sulzer D, Dauer W, et al. Regulation of the development of mesencephalic dopaminergic systems by the selective expression of glial cell line-derived neurotrophic factor in their targets. J Neurosci 2004; 24: 3136-3146.
Fumagalli F, Racagni G, Riva MA. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. Pharmacogenomics J 2006; 6: 95-104.
Baloh R, Enomoto H, Jonson E, Milbrandt J. The GDNF family ligands and receptors-implications for neural development. Curr Opin Neurobiol 2000; 10: 103-110.
Tomac A, Lindquist E, Lin L, Ögren S, Young D, Hoffer B, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335-339.
Gash D, Zhang Z, Ovadia A, Cass W, Simmerman L, Rusell D, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380: 252-255.
Gill S, Patel N, Hotton G, O’ Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9: 589-595.
Kearns C, Cass W, Smoot K, Kryscio R, Gash D. GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J Neurosci 1997; 17: 7111-7118.
Sullivan A, Opacka-Juffry J, Blunt S. Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 1998; 10: 57-63.
Murer M, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 2001; 63: 71-124.
Paraskevas G, Kapaki E, Petropoulou O, Anagnostouli M, Vagenas V, Papageorgiou C. Plasma levels of antioxidants vitamins C and E are decreased in vascular Parkinsonism. J Neurol Sci 2003; 215: 51-55.
Cadet J, Jackson-Lewis V, Fahn S. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 1989; 476: 10-15.
Perumal A, Gopal V, Tordzro W, Cooper T, Cadet J. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 1992; 29: 699-701.
Martin A, Prior R, Shukitt-Hale B, Cao G, Joseph J. Effect of fruits, vegetables, or vitamin E-rich diet on vitamins E and C distribution in peripheral and brain tissues: implications for brain function. J Gerontol A Biol Sci Med Sci 2000; 55: 144-151.
VanItallie T, Nufert T. Ketones: metabolism’s ugly duckling. Nutr Rev 2003; 61: 327-341.
Jiménez-Jiménez F, Molina J, Hernández A, Fernández-Vivancos E, de Bustos F, Barcenilla B, et al. Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease. Neurosci Lett 1999; 271: 33-36.
Frey P. Coenzymes and radicals. Science 2001; 5551: 2489-2490.
Hawkins C, Borges R, Perham R. A common structural motif in thiamin pyrophosphate binding enzymes. FEBS Lett 1989; 255: 77-82.
Shikata H, Koyama S, Egi Y, Yamada K, Kawasaki T. Cytosolic adenylate kinase catalyzes the synthesis of thiamine triphosphate from thiamine diphosphate. Biochem Int 1989; 18: 933-941.
Meghal S, O´Neal R, Koeppe R. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat and brain in vivo. J Nutr Sci Vitaminol 1977; 23: 385-393.
Butterworth R. Effects of thiamine deficiency on brain metabolism: implications for the pathogenesis of the Wernicke-Korsakoff syndrome. Alcohol Alcohol 1989; 24: 271-279.
Bettendorff L, Mastrogiacomo F, LaMarche J, Dozic S, Kish S. Brain levels of thiamine and its phosphate esters in Friedreich´s ataxia and spinocerebellar ataxia type 1. Mov Disord 1996; 11: 437-439.
Larrieu A, Kao R, Yazdanfar S, Redovan E, Silver J, Ghosh S, et al. Preliminary evaluation of cocarboxylase on myocardial protection of the rat. Heart Ann Thorac Surg 1987; 43: 168-171.
Larrieu A, Yazdanfar E, Redovan E, Eftychiadis A, Kao R, Silver J, et al. Benefical effects of cocarboxylase in the treatment of experimental myocardial infarction in dogs. Am Surg 1987; 53: 721-725.