2003, Number 2
<< Back Next >>
Ann Hepatol 2003; 2 (2)
Alcohol-induced liver disease: when fat and oxidative stress meet
Fernández-Checa JC
Language: English
References: 61
Page: 69-75
PDF size: 71.89 Kb.
Text Extraction
Reactive oxygen species (ROS) act as signaling intermediates regulting multiple cellular processes. The fate and disposal of the signaling species are determined by the actions of antioxidants, particularly glutathione (GSH). The mitochondrial pool of GSH (mGSH) arises from the transport of cytosol GSH by a specific mitochondrial carrier and is responsible for the maintenance of a healthy competent organelle. The depletion of mGSH upon impairment of the mitochondrial transport activity leaves mitochondria unprotected from damaging effects of ROS overgeneration within the mitochondrial electron transport chain. Tumor necrosis factor-
α (TNF-
α) has emerged as a key player in the progression of the alcohol-induced liver disease (ALD), and is known to target mitochondria. Key components of TNF signaling include sphingolipids, particularly ceramide generated from acidic sphingomyelinase activation serving as a source for gangliosides. In experimental models alcohol consumption enhances cholesterol levels and subsequent deposition into mitochondria resulting in selective decrease in the mGSH stores which is sufficient by itself to sensitize hepatocytes to TNF-
α-mediated cell death. Thus, the combination of TNF-
α overproduction, enhanced glycosphingolipid generation and selective mGSH depletion by alcohol intake cooperate making the liver sensitive to alcohol.
REFERENCES
Lieber CS. Alcohol and the liver: an update. Gastroenterology 1994; 106: 1085-1105.
Fernandez-Checa JC, Colell A, Garcia-Ruiz C. S-adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol 2002; 27: 179-183.
McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 1989; 9: 349-351.
Tilg H, Diehl AM. Cytokines and alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000; 343: 1467-1476.
Yin M, Wheeler MD, Kono H, Bradford B, et al. Essential role of tumor necrosis factor in alcoholic-induced liver injury in mice. Gastroenterology 1999; 117: 942-952.
Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 2001; 15: 1335-1349.
Colell A, García-Ruiz C, Miranda M, Ardite E, Marí M, Morales A, Corrales F, Kaplowitz N, Fernández-Checa JC. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to Tumor Necrosis Factor. Gastroenterology 1998; 115: 1541-51.
Pastorino JG, Hoek JW. Ethanol potentiates tumor necrosis factor cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatology 2000; 31: 1141-1152.
Faubion WA, Gores GJ. Death receptors in liver biology and pathobiology. Hepatology 1999; 29: 1-4.
Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60, 643-665.
Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000; 10: 73-80.
Cremesti AE, Goñi FM, Kolesnick RN. Role of sphingomyelinase and ceramide in modulating rafst: do biophysical properties determine biologic outcome? FEBS Lett 2002; 531, 47-53.
Segui B, Cuvillier O, Adam-Klages, S, Garcia V, Malagarie-Cazenave S, Leveque S, Caspar-Bauguil S, Coudert J, Salvayre R, Kronke M, Levade T. Involvement of FAN in TNF-induced apoptosis. J Clin Invest 2001; 108: 143-151.
Morita Y, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchmann EH, Kolesnick RN, Tilly JL. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 2000; 6: 1109-1114.
Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 2000; 275: 8657-8663.
Paris F, Grassmé H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, Fuks Z, Gulbins E, Kolesnick R. Natural ceramide reverses Fas resistance of acid sphingomyelinase -/- hepatocytes. J Biol Chem 2001; 276: 8276-8305.
Garcia-Ruiz C, Colell A, Mari M, Morales A, Calvo M, Enrih C, Fernandez-Checa JC. Defective TNF-a mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003; 111, 197-208.
Kolter T, Proia RL, Sandhoff K. Combinatorial ganglioside synthesis. J Biol Chem 2002; 277: 25859-25862.
DeMaria R, Lenti T, Malissan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R. 1997. Requirement for GD3 ganglioside in ceramide-induced apoptosis. Science 1997; 277: 1652-1655.
García-Ruiz C, Colell A, París R, Fernández-Checa JC. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release and caspase activation. FASEB J 2000; 14: 847-858.
Colell A, Morales A, Fernandez-Checa JC, Garcia-Ruiz C. Ceramide genererated by acidic sphingomyelinase contributes to tumor necrosis factor-mediated apoptosis in HT-29 cells through glycosphingolipid generation. Possible role of ganglioside GD3. FEBS Lett 2002; 526: 135-141.
Copani A, Melchiorri D, Caricasole A, Marini F, Sale P, Carnevale R, Galini R, Sortino MA, Lenti L, DeMaria R, Nicoletti F. Beta-amyloid-induced synthesis of ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neuroscience 2002; 22, 3963-3968.
Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC. Trafficking of GD3 to mitochondria by tumor necrosis factor-a. J Biol Chem 2002; 277: 36443-36448.
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513-519.
García-Ruiz C, Morales A, Ballesta A, Rodés J, Kaplowitz N, Fernández-Checa JC. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J Clin Invest 1994; 94: 193-201.
Martensson J, Lai CK, Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 1990; 87: 7185-7189.
Colell A, García-Ruiz C, Morales A, Ballesta A, Ookhtens M, Rodés J, Kaplowitz N, Fernández-Checa JC. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-fed rats: effect of membrane physical properties and S-adenosyl-L-methionine. Hepatology 1997; 26: 699-708.
Fernández-Checa JC, García-Ruiz C, Ookhtens M, Kaplowitz N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. J Clin Invest 1991; 87: 397-405.
Hirano T, Kaplowitz N, Kamimura T, Tsukamoto H, Fernández-Checa JC. Hepatic mitochondrial GSH depletion and progression of experimental alcoholic liver disease in rats. Hepatology 1992; 16: 1423-1428.
Nakagami M, Wheeler MD, Bradford BU, Uesugi T, Mason RP, Connor HD, Dikalova A, Kadiiska M, Thurman RG. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J Biol Chem 2001; 276: 36664-36672.
Zhao P, Kahorn TF, Slattery JT. Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liver. Hepatology 2002; 36: 326-335.
Echtay KS, Murphy MP, Smith RAJ, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side: studies using targeted antioxidants. J Biol Chem 2002; 277: 47129-47135.
Colell A, Coll O, García-Ruiz C, Paris R, Tiribelli C, Kaplowitz N, Fernández-Checa JC. Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor-induced cell death by replenishing mitochondrial glutathione. Hepatology 2001; 34: 964-971.
Lluis JM, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC. Acetaldehyde impairs the mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology 2003; 124, 708-724.
Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem 2003; 278, 22183-22186.
Griffith OW, Meister A. Origin and tirnover of mitochondrial glutathione. Proc Natl Acad Sci USA 1985; 82: 4668-372.
Lash LH, Putt DA. Matherly PH, Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter. J Pharm Exp Ther 303 2002; 293: 476-486.
Chen Z, Lash LH. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarte carriers. J Pharmacol Exp Ther 1998; 285: 608-618.
Chen Z, Putt DA, Lash LH. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: Further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mithocondrial glutathione transport. Arch Biochem Biophys 2000; 373: 193-202.
García-Ruiz C, Morales A, Colell A, Rodés J, Yi JR, Kaplowitz N, Fernández-Checa JC. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. J Biol Chem 1995; 270: 15946-15949.
Coll O, Colell A, García-Ruiz C, Kaplowitz N, Fernádez-Checa JC. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology, in press, 2003.
Fernández-Checa JC, Yi JR, García Ruiz C, Ookhtens M, Kaplowitz N. Plasma membrane and mitochondrial transport oh hepatic reduced glutathione. Sem Liver Dis 1996; 16: 147-158.
Fiermonte G, Dolce V, Palmieri L, Ventura M, Rusnswick MJ, Palmieri F, Walker JE. Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol Chem 2001; 276: 8225-8230.
Palmieri L, Agrimi G, Runswick MJ, Fearneley IA, Palmieri F, Walker JE. Identification in saccharomyces cerevisiae of tho isoforms of a novel mitochondrial transporter for 2- oxoadipate and 2-oxoglutarate. J Biol Chem 2001; 276: 1916-1922.
Lemasters JJ. Mechanisms of hepatici toxicity. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 1999; 276: G1-G6.
Bernardi P. Mitochondrial transport of cations: channels, exchangers and permeability transition. Physiol Rev 1999; 79: 1127-1155.
Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86, 147-157.
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase 9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-489.
Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase 3, hsp 60 and hsp 10 in the mitochondrial fraction. EMBO J 1999; 18: 2040-2048.
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Constantini P, Loeffler M, Larochette N, Goodlett, DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446.
van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, Rodríguez I, Ruiz Carrillo A, Vandekerchhove J, Declerq W, Beyaert, R, Vendenabeele P. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 2001; 8: 1136-1142.
Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33-42.
Verhagen AM, Ekert PG, Pakush M, Silke J, Connoly LM, Reid GE, Moritz RL, Sympson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000, 102: 43-53.
van Loo G, van Gurp M, Depuydt B, Srinvasula SM, Rodríguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P. The serine protease Omi/Htr A2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9:20-26.
Costantini P, Bruey JM, Castedo M, Metivier D, Loeffler M, Susin SA, Ravagnan L, Zamzami N, Garrido C, Kroemer G. Pre-processed caspase-9 contained in mitochondria participates in apoptosis. Cell Death Differ 2002; 9: 82-88.
Waterhouse NJ, Rice JE, Green DR. And all of a sudden it’s over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 2002; 84: 113-121.
Polster BM, Kinnally KW, Fiskum G. BH3 domain peptide induces cell-type selective mitochondrial outer membrane permeabilization. J Biol Chem 2001; 276: 37887-37894.
Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 1998; 143: 217-224.
Finucane DM, Waterhouse NJ, Amarante-Mendes GP, Cotter TG, Green DR. Collapse of the inner mitochondrial transmembrane potential is not required for apoptosis of HL-60 cells. Exp Cell Res 1999; 251: 166-174.
Pastorino JC, Marcineviciute A, Cahill A, Hoek JB. Potentiation by chronic ethanol treatment of the mitochondrial permeability transition. Biochem Biophys Res Commun 1999; 265: 405-409.
Neuschwander BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 2003; 37: 1202-1219.