2022, Number 3
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (3)
Standardization of an Escherichia coli adhesion assay for anti-biofilm agents screening
Díaz-Reyes M, Perez-Llanes M, Blanco-Hidalgo O, Espinosa-Castaño I
Language: Spanish
References: 34
Page:
PDF size: 373.44 Kb.
ABSTRACT
Introduction:
Biofilms are a key factor in the development of infectious diseases and drug resistance for their control. New therapeutic strategies include natural products as anti-biofilm agents. However, comparing results is often difficult due to the lack of homogeneity and standardization of the methods used to study biofilm formation in vitro.
Objective:
To standardize an Escherichia coli microplate adhesion assay for potential anti-biofilm agents screening.
Methods:
The microplate adhesion method and crystal violet staining were used. The influence of experimental conditions such as bacterial concentration, culture medium, and incubation time were evaluated.
Results:
Optimal conditions for biofilm formation included: Luria Bertani (LB) medium, bacterial concentration at 105 CFU/mL, and an incubation time of 24 hours.
Conclusions:
The results showed that culture conditions influence biofilm formation. Optimal culture conditions for the formation of E. coli biofilms were determined, which could be used in further studies on the effect of natural products on the inhibition or destruction of biofilms.
REFERENCES
Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301. DOI:http://dx.doi.org/10.1093/femsre/fux0101.
Letsididi KS, Lou Z, Letsididi R, Mohammed K, Maguy BL. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. Lebenson Wiss Technol. 2018;94:25-32. DOI:http://dx.doi.org/10.1016/j.lwt.2018.04.0182.
Dieltjens L, Appermans K, Lissens M, Lories B, Kim W, Van der Eycken EV, et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun. 2020;11(1):107. DOI:http://dx.doi.org/10.1038/s41467-019-13660-X3.
Watters C, Fleming D, Bishop D, Rumbaugh KP. Host responses to biofilm. Prog Mol Biol Transl Sci. 2016;142:193-239. DOI:http://dx.doi.org/10.1016/bs.pmbts.2016.05.0074.
Macià MD, del Pozo JL, Díez-Aguilar M, Guinea J. Microbiological diagnosis of biofilm-related infections. Enferm Infecc Microbiol Clin (Engl). 2018;36(6):375-81. DOI:http://dx.doi.org/10.1016/j.eimce.2017.04.0155.
Denamur E, Bonacorsi S, Giraud A, Duriez P, Hilali F, Amorin C, et al. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol. 2002;184(2):605-9. DOI:http://dx.doi.org/10.1128/JB.184.2.605-609.20026.
Crémet L, Caroff N, Giraudeau C, Reynaud A, Caillon J, Corvec S. Detection of clonally related Escherichia coli isolates producing different CMY ß-lactamases from a cystic fibrosis patient. J Antimicrob Chemother. 2013;68(5):1032-5. DOI:http://dx.doi.org/10.1093/jac/dks5207.
Oteo J, Pérez-Vázquez M, Campos J. Extended-spectrum ß-lactamase producing Escherichia coli: changing epidemiology and clinical impact. Curr Opin Infect Dis. 2010;23(4):320-6. DOI:http://dx.doi.org/10.1097/qco.0b013e3283398dc18.
Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20(10):981-90. DOI:http://dx.doi.org/10.1111/1469-0691.126519.
Malone M, Goeres DM, Gosbell I, Vickery K, Jensen S, Stoodley P. Approaches to biofilm-associated infections: the need for standardized and relevant biofilm methods for clinical applications. Expert Rev Anti Infect Ther. 2017;15(2):147-56. DOI:http://dx.doi.org/10.1080/14787210.2017.126225710.
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325. DOI:http://dx.doi.org/10.3389/fmicb.2020.56632511.
Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol. 2008;105(2):585-90. DOI:http://dx.doi.org/10.1111/j.1365-2672.2008.03791.X12.
Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M. Quantifying implant-associated biofilms: Comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods. 2016;130:61-8. DOI:http://dx.doi.org/10.1016/j.mimet.2016.07.01613.
Gómez J, Gómez-Lus ML, Bas P, Ramos C, Caini F, Maestre JR. ¿Es la cuantificación del biofilm un elemento diferenciador en la patogenia de bacilos gramnegativos? Rev Española de Quimioterapia. 2013;26(2).
Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 2007;115(8):891-9. DOI:http://dx.doi.org/10.1111/j.1600-0463.2007.apm_630.X
Boudarel H, Mathias J-D, Blaysat B, Grédiac M. Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes. 2018;4(1). DOI:http://dx.doi.org/10.1038/s41522-018-0062-516.
Crémet L, Corvec S, Batard E, Auger M, Lopez I, Pagniez F, et al. Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli. Diagn Microbiol Infect Dis. 2013;75(3):252-5. DOI:http://dx.doi.org/10.1016/j.diagmicrobio.2012.11.01917.
Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43(3):313-51. DOI: [url]http://dx.doi.org/10.1080/1040841X.2016.1208146[/url]
Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006. DOI:http://dx.doi.org/10.1128/jcm.22.6.996-1006.198519.
Mulder JG, Degener JE. Slime-producing properties of coagulase-negative staphylococci isolated from blood cultures. Clin Microbiol Infect. 1998;4(12):689-94. DOI:http://dx.doi.org/10.1111/j.1469-0691.1998.tb00653.X20.
Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 2003;92(1-2):179-85. DOI:http://dx.doi.org/10.1016/s0378-1135(02)00360-721.
Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S, et al. Detection of biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence of ica genes with two classic phenotypic methods. J Biomed Mater Res A. 2006;76(2):425-30. DOI:http://dx.doi.org/10.1002/jbm.a.3055222.
Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol. 2003;69(9):5648-55. DOI:http://dx.doi.org/10.1128/aem.69.9.5648-5655.200323.
Allignet J, Galdbart J-O, Morvan A, Dyke KGH, Vaudaux P, Aubert S, et al. Tracking adhesion factors in Staphylococcus caprae strains responsible for human bone infections following implantation of orthopaedic material. Microbiology. 1999;145(Pt 8)(8):2033-42. DOI: http://dx.doi.org/10.1099/13500872-145-8-203324.
Fowler VG Jr, Fey PD, Reller LB, Chamis AL, Corey GR, Rupp ME. The intercellular adhesin locus ica is present in clinical isolates of Staphylococcus aureus from bacteremic patients with infected and uninfected prosthetic joints. Med Microbiol Immunol. 2001;189(3):127-31. DOI:http://dx.doi.org/10.1007/s430-001-8018-525.
Tan Y, Leonhard M, Schneider-Stickler B. Evaluation of culture conditions for mixed biofilm formation with clinically isolated non-albicans Candida species and Staphylococcus epidermidis on silicone. Microb Pathog. 2017;112:215-20. DOI:http://dx.doi.org/10.1016/j.micpath.2017.10.00226.
Bogut A, Magrys A. Analysis of the bacterial biofilm formation in different models of the in vitro culture. Eur J Clin Exp Med. 2021;19(1):40-5. DOI:http://dx.doi.org/10.15584/ejcem.2021.1.627.
Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC. Attachment and biofilm formation by Escherichia coli28. O157: H7 at different temperatures, on various food-contact surfaces encountered in beef processing. International Journal of Food Microbiology. 2011;149(3):262-8.
Skyberg JA, Siek KE, Doetkott C, Nolan LK. Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny. J Appl Microbiol. 2007;102(2):548-54. DOI:http://dx.doi.org/10.1111/j.1365-2672.2006.03076.X29.
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, et al. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnology. 2014;12(1):2. DOI:http://dx.doi.org/10.1186/1477-3155-12-230.
Leon Torres LA, Bojaca Lopez VC. Evaluación de la actividad anti-biofilm de nanoparticulas de plata. Cundinamarca: Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca; 2016.
Singh AK, Prakash P, Achra A, Singh GP, Das A, Singh RK. Standardization and Classification of in vitro Biofilm Formation by Clinical Isolates of Staphylococcus aureus. J Glob Infect Dis. 2017;9(3):93-101. DOI:http://dx.doi.org/10.4103/jgid.jgid_91_1632.
Cáceres ME, Etcheverría AI, Padola NL. Efectos del medio de cultivo y de la metodología aplicada sobre la formación de biopelículas de 2 cepas de Escherichia coli diarreagénicas. Rev Argent Microbiol. 2019;51(3):208-13. DOI:http://dx.doi.org/10.1016/j.ram.2018.04.007
Machado D, Palmeira-de-Oliveira A, Cerca N. Optimization of culture conditions for Gardnerella vaginalis biofilm formation. J Microbiol Methods. 2015;118:143-6. DOI:http://dx.doi.org/10.1016/j.mimet.2015.09.00734.