2025, Number 2
<< Back Next >>
Cir Columna 2025; 3 (2)
Variability of spinopelvic parameters in patients with chronic-degenerative lumbar pathology with surgical management in a reference orthopedic hospital
Tlapacoyoa-Leonides JA, Quiroz-Williams J, García-Navarro JL, Gaytán-Fernández S, Barragán-Hervella RG, Jiménez-Armenta G
Language: Spanish
References: 22
Page: 107-112
PDF size: 228.90 Kb.
ABSTRACT
Introduction: spinal deformity in adults has become a pathology whose frequency is increasing due to the tendency towards a longer life in the population, as well as to maintain the level of activity of the same.
Objective: to describe the variability of spinopelvic parameters in patients with chronic-degenerative lumbar pathology with surgical management.
Material and methods: observational, descriptive, retrospective and longitudinal study of patients with spondyloarthrosis and/or degenerative lumbar spondylolisthesis undergoing orthopedic surgery. The patients were divided into two groups: instrumentation + fusion (IF), and without instrumentation + release (LSI). pelvic incidence (PI), sacral slope (SS), lumbar lordosis (LL), pelvic tilt (PT) and pelvic incidence minus lumbar lordosis (PI−LL) were measured on the baseline radiograph, at one and six months postoperatively. Statistical analysis was performed with Student's t-test. Statistically significant value was p < 0.005.
Results: sample 96 patients. At six months follow-up (A versus B), PI: 52.0 ± 10.1 versus 52.2 ± 14.7 (p = 0.932); SS: 34.1 ± 8.3 versus 32.7 ± 11.0 (p = 0.533); LL: 49.4 ± 13.5 versus 49.0 ± 13.2 (p = 0.889); PT: 17.89 ± 7.6 versus 9.4 ± 8.5 (p = 0.402); PI−LL: 2.58 ± 12.4 versus 3.26 ± 13.84 (p = 0.833).
Conclusions: changes in spinopelvic parameters were observed in both groups, but were greater in the non-instrumented release group, but were not statistically significant.
REFERENCES
Kyrola KK, Salme J, Tuija J, Tero I, Eero K, Arja H. Intra- and interrater reliability of sagittal spinopelvic parameters on full-spine radiographs in adults with symptomatic spinal disorders. Neurospine. 2018; 15: 175-181. doi: 10.14245/ns.1836054.027.
Hasegawa K, Kabata T, Kajino Y, Inoue D, Sakamoto J, Tsuchiya H. The influence of pelvic tilt on stress distribution in the acetabulum: finite element analysis. BMC Musculoskelet Disord. 2021; 22: 764. doi: 10.1186/s12891-021-04500-5.
Mata-Ibarra JM, Arrieta-María VE, Torres-Romero F, Avendaño-Chacón N, Escobar-Abrego M et al. Spinopelvic surgical stabilization: a cases series. Rev Colomb Ortop Traumatol. 2013; 28: 55-62. doi: 10.1016/j.rccot.2015.02.002.
Legaye J, Duval-Beaupere G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998; 7: 99-103. doi: 10.1007/s005860050038.
Yilgor C, Sogunmez N, Boissiere L, Yavuz Y, Obeid I, Kleinstück F, et al. Global alignment and proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am. 2017; 99: 1661-1672. doi: 10.2106/JBJS.16.01594.
Park SA, Kwak DS, Cho HJ, Min DU. Changes of spinopelvic parameters in different positions. Arch Orthop Trauma Surg. 2017; 137: 1223-1232. doi: 10.1007/s00402-017-2757-0.
Hayden AM, Hayes AM, Brechbuhler JL, Israel H, Place HM. The effect of pelvic motion on spinopelvic parameters. Spine J. 2018; 18: 173-178. doi: 10.1016/j.spinee.2017.08.234.
Shakeri M, Mahdavi SM, Rikhtehgar M, Soleimani M, Ghandhari H, Jafari B, et al. EOS® is reliable to evaluate spinopelvic parameters: a validation study. BMC Med Imaging. 2024; 24: 35. doi: 10.1186/s12880-023-01178-0.
Fujita N, Yagi M, Watanabe K, Nakamura M, Matsumoto M, Yokoyama Y, et al. Determining the validity and reliability of spinopelvic parameters through comparing standing whole spinal radiographs and upright computed tomography images. BMC Musculoskelet Disord. 2021; 22: 899. doi: 10.1186/s12891-021-04786-5.
Ries Z, Harpole B, Graves C, Gnanapragasam G, Larson N, Weintstein S, et al. Selective thoracic fusion of Lenke I and II curves affects sagittal profiles but not sagittal or spinopelvic alignment: a case-control study. Spine (Phila Pa 1976). 2015; 40: 926-934. doi: 10.1097/BRS.0000000000000861.
Hohenhaus M, Volz F, Merz Y, Watzlawick R, Scholz C, Hubbe U, et al. The challenge of measuring spinopelvic parameters: inter-rater reliability before and after minimally invasive lumbar spondylodesis. BMC Musculoskelet Disord. 2022; 23: 104. doi: 10.1186/s12891-022-05055-9.
Bari TJ, Hallager DW, Tondevold N, Karbo T, Hansen LV, Dahl B, et al. Spinopelvic parameters depending on the angulation of the sacral end plate are less reproducible than other spinopelvic parameters in adult spinal deformity patients. Spine Deform. 2019; 7: 771-778. doi: 10.1016/j.jspd.2018.12.002.
Vila-Casademunt A, Pellisé F, Acaroglu E, Pérez-Grueso FJS, Martín-Buitrago MP, Sanli T, et al. The reliability of sagittal pelvic parameters: the effect of lumbosacral instrumentation and measurement experience. Spine (Phila Pa 1976). 2015; 40: E253-258. doi: 10.1097/BRS.0000000000000720.
Khalsa AS, Mundis GM, Yagi M, Fessler RG, Bess S, Hosogane N, et al. Variability in Assessing Spinopelvic Parameters with Lumbosacral Transitional Vertebrae: Inter- and Intraobserver Reliability Among Spine Surgeons. Spine (Phila Pa 1976). 2018;43(12):813–6. doi: 10.1097/BRS.0000000000002433.
Maillot C, Ferrero E, Fort D, Heyberger C, Le Huec JC. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops®. Eur Spine J. 2015; 24: 1574-1581. doi: 10.1007/s00586-015-3817-1.
Banno T, Togawa D, Arima H, Hasegawa T, Yamato Y, Kobayashi S, et al. The cohort study for the determination of reference values for spinopelvic parameters (T1 pelvic angle and global tilt) in elderly volunteers. Eur Spine J. 2016; 25: 3687-3693. doi: 10.1007/s00586-016-4411-x.
Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, et al. Scoliosis research society-schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976). 2012; 37: 1077-1082. doi: 10.1097/BRS.0b013e31823e15e2.
Lindado CA, Gutiérrez S, Patiño S, Acevedo JC. Biomechanical factors related to surgical outcomes on patients treated with lumbar arthrodesis in a high complexity center in Colombia. Rev Soc Esp Dolor. 2020; 27: 160-167. doi: 10.20986/resed.2020.3759/2019.
Elmorsy SEH, Abulnasr HA, Hassan Y, Samra M, Eissa EM. Functional outcome of surgical management of low mid-grade lumbar spondylolisthesis when considering the sagittal balance parameters preoperatively: a prospective study. Chin Neurosurg J. 2022; 8: 35. doi: 10.1186/s41016-022-00303-2.
Malcok UA, Akar A. Effects of lumbar microdiscectomy on spinopelvic parameters. J Turk Spinal Surg. 2021; 32: 32-37. doi: 10.4274/jtss.galenos.2021.372.
Lee JH, Na KH, Kim JH, Jeong HY, Chang DG. Is pelvic incidence a constant, as everyone knows? Changes of pelvic incidence in surgically corrected adult sagittal deformity. Eur Spine J. 2016; 25: 3707-3714. doi: 10.1007/s00586-015-4199-0.
Valdivia-Zúñiga C, Bobadilla-Lescano G, Martínez-Escalante F, Balam-May A, Cámara-Arrigunaga F. Frecuencia de alteraciones espinopélvicas en pacientes postoperados de artroplastía total de cadera y su asociación con resultados funcionales. Acta Ortop Mex. 2024; 38: 3-9. doi: 10.35366/114659.
EVIDENCE LEVEL
III