2025, Number 2
<< Back Next >>
Rev Mex Anest 2025; 48 (2)
Enhancing early detection of obstructive sleep apnea syndrome: integrative application of artificial intelligence technologies
Ramos-Zaga F
Language: Spanish
References: 28
Page: 94-97
PDF size: 351.75 Kb.
ABSTRACT
Introduction: obstructive sleep apnea syndrome (OSAS) poses serious health risks, which is why its early detection is crucial for effective treatment.
Objective: this paper aims to analyze the potential of artificial intelligence (AI) in the detection of OSAS, specifically using polysomnography data.
Material and methods: to this end, a literature review was carried out through an exhaustive search of the scientific literature related to OSAS and its diagnosis.
Results: according to the studies reviewed, AI models accurately predict the risk of OSAS. Machine learning methods show promise in analyzing snoring sounds and facial images for diagnosing OSAS.
Conclusion: the incorporation of AI into multiple diagnostic approaches provides a comprehensive strategy for the early detection of OSAS. However, further validation in diverse populations is still needed.
REFERENCES
Carrillo-Mora P, Ramírez-Peris J, Magaña-Vázquez K. Neurobiología del sueño y su importancia: antología para el estudiante universitario. Rev Fac Med UNAM. 2013;56:5-15.
Castillo J, Lan A, Morán J, Aparicio E, Tuñón V, Gutiérrez M, et al. La relación entre el rendimiento universitario y la privación de sueño. Rev Iniciación Científica. 2020;6:53-59. doi: 10.33412/rev-ric.v6.2.2896.
Vizcarra-Escobar D. Evolución histórica de los métodos de investigación en los trastornos del sueño. Rev Medica Hered. 2000;11:136-143. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1018-130X2000000400005&lng=es&nrm=iso&tlng=es
Parrales DP, Angeline F. Síndrome de apnea obstructiva del sueño y su relación con el desarrollo de hipertensión arterial en adultos mayores de 65 a 80 años de edad de la comunidad de Palmar 2022 [Tesis]. La Libertad, Ecuador: Universidad Estatal Península de Santa Elena; 2022. Disponible en: https://repositorio.upse.edu.ec/handle/46000/7977
Lloberes P, Durán-Cantolla J, Martínez-García MÁ, Marín JM, Ferrer A, Corral J, et al. Diagnóstico y tratamiento del síndrome de apneas-hipopneas del sueño. Arch Bronconeumol. 2011;47:143-156. Disponible en: https://www.archbronconeumol.org/en-diagnostico-tratamiento-del-sindrome-apneas-hipopneas-articulo-S0300289611000238
Viñals-Iglesias H, Bové-Ribé A. Manifestaciones dento-orofaciales de los trastornos del sueño. FMC - Form Médica Contin Aten Primaria. 2001;8:138-151. doi: 10.1016/S1134-2072(01)75380-7.
Abad-García A. Satisfacción marital en personas con síndrome de apnea-hipopnea del sueño en las zonas de levante y poniente de Almería [Master Thesis]. Almería: Universidad de Almería; 2014. Disponible en: https://repositorio.ual.es/bitstream/handle/10835/3070/Trabajo.pdf?sequence=1
Matarrita-Salas J. Rendimiento laboral del personal de salud de la Fundación Salud sin Fronteras, en relación con la apnea del sueño. 2013. Disponible en: https://repositorio.ulacit.ac.cr/handle/20.500.14230/1058
Olivi H. Apnea del sueño: cuadro clínico y estudio diagnóstico. Rev médica Clín Las Condes. 2013;24:359-373. doi: 10.1016/S0716-8640(13)70173-1.
Carreño-Ruedas LM, Pallares-Pardo EP, Cote-Flórez LV, Parra-Almeida RF. Amplitud de la vía aérea faríngea relacionada con la posición de los maxilares y clase esquelética, según diagnóstico de SAOS [Bachelor Thesis]. Bucaramanga, Colombia: Universidad Santo Tomás; 2017. Disponible en: https://repository.usta.edu.co/handle/11634/11513
Almonte-Estrada JM, Pagán-Santos DA. Evolución clínica de pacientes con sospecha de síndrome de apnea obstructiva del sueño (SAOS) sometidos a cirugía electiva. [Doctoral dissertation]. Santo Domingo: Universidad Nacional Pedro Henríquez Ureña; 2021. Disponible en: https://repositorio.unphu.edu.do/handle/123456789/3596
Cristancho-Montenegro AE, Marcelo-Pinilla LA. Diabetes mellitus tipo 2, obesidad y Síndrome de apnea obstructiva del sueño. En: Diabetes mellitus: una mirada interdiscip. Colombia: Areandina; 2017. p. 51-57. Disponible en: https://digitk.areandina.edu.co/bitstream/handle/areandina/2599/2019_03_28_DiabetesMellitus_PDF_Web.pdf?sequence=1&isAllowed=y#page=52
Stewart T. Overview of motor vehicle crashes in 2020. 2022. Disponible en: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813266
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7:687-698. doi: 10.1016/S2213-2600(19)30198-5.
Arnaud C, Bochaton T, Pépin JL, Belaidi E. Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis. 2020;113:350-358. doi: 10.1016/j.acvd.2020.01.003.
Moridian P, Shoeibi A, Khodatars M, Jafari M, Pachori RB, Khadem A, et al. Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: methods, challenges, and future works. WIREs Data Min Knowl Discov. 2022;12:e1478. doi: 10.1002/widm.1478.
Bandyopadhyay A, Goldstein C. Clinical applications of artificial intelligence in sleep medicine: a sleep clinician's perspective. Sleep Breath. 2023;27:39-55. doi: 10.1007/s11325-022-02592-4.
Goldstein CA, Berry RB, Kent DT, Kristo DA, Seixas AA, Redline S, et al. Artificial intelligence in sleep medicine: background and implications for clinicians. J Clin Sleep Med. 2020;16:609-618. doi: 10.5664/jcsm.8388.
Pennings N, Golden L, Yashi K, Tondt J, Bays HE. Sleep-disordered breathing, sleep apnea, and other obesity-related sleep disorders: an Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes Pillars. 2022;4:100043. doi: 10.1016/j.obpill.2022.100043.
Sheta A, Turabieh H, Braik M, Surani SR. Diagnosis of obstructive sleep apnea using logistic regression and artificial neural networks models. En: Arai K, Bhatia R, Kapoor S, editores. Proceedings of the Future Technologies Conference (FTC) 2019. Cham: Springer International Publishing; 2020. p. 766-84. (Advances in Intelligent Systems and Computing). doi: 10.1007/978-3-030-32520-6_56.
Emsaeili F, Sadrhaghighi A, Sadeghi-Shabestari M, Nastarin P, Niknafs A. Comparison of superior airway dimensions and cephalometric anatomic landmarks between 8-12-year-old children with obstructive sleep apnea and healthy children using CBCT images. J Dent Res Dent Clin Dent Prospects. 2022;16:18-23. doi: 10.34172%2Fjoddd.2022.003.
Zhang S, Suresh L, Yang J, Zhang X, Tan SC. Augmenting sensor performance with machine learning towards smart wearable sensing electronic systems. Adv Intell Syst. 2022;4:2100194. doi: 10.1002/aisy.202100194.
Monna F, Ben-Messaoud R, Navarro N, Baillieul S, Sanchez L, Loiodice C, et al. Machine learning and geometric morphometrics to predict obstructive sleep apnea from 3D craniofacial scans. Sleep Med. 2022;95:76-83. doi: 10.1016/j.sleep.2022.04.019.
Chen L, Li S, Bai Q, Yang J, Jiang S, Miao Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021;13:4712. doi: 10.3390/rs13224712.
De Fazio R, Mattei V, Al-Naami B, De Vittorio M, Visconti P. Methodologies and wearable devices to monitor biophysical parameters related to sleep dysfunctions: an overview. Micromachines. 2022;13:1335. doi: 10.3390/mi13081335.
Cay G, Ravichandran V, Sadhu S, Zisk AH, Salisbury AL, Solanki D, et al. Recent advancement in sleep technologies: a literature review on clinical standards, sensors, apps, and AI methods. IEEE Access. 2022;10:104737-104756. doi: 10.1109/ACCESS.2022.3210518.
Zhao K, Jiang H, Wang Z, Chen P, Zhu B, Duan X. Long-term bowel sound monitoring and segmentation by wearable devices and convolutional neural networks. IEEE Trans Biomed Circuits Syst. 2020;14:985-996. doi: 10.1109/TBCAS.2020.3018711.
Islam B, Rahman MM, Ahmed T, Ahmed MY, Hasan MM, Nathan V, et al. BreathTrack: detecting regular breathing phases from unannotated acoustic data captured by a smartphone. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2021;5:1-22. doi: 10.1145/3478123.