2025, Number 1
<< Back Next >>
salud publica mex 2025; 67 (1)
The target trial framework for causal inference with observational studies
Núñez I, Lajous M
Language: Spanish
References: 42
Page: 83-90
PDF size: 272.10 Kb.
ABSTRACT
The use of observational studies for causal inference is a
necessity, as randomized trials are not always available or
possible to carry out. To reduce sources of bias present in
“classical” observational studies, the target trial framework
has been proposed. First one defines the following components
of the pragmatic clinical trial (the target trial) would
answer our research question: eligibility criteria, treatment
strategies, assignment, follow-up, outcomes, causal contrast,
and statistical analysis plan. Then, these components are
modified based on available observational data, and used to
emulate the target trial as closely as possible. This leads to
observational studies that are generally less biased and with
more reliable results. Nonetheless, it is important to consider
the limitations of this framework given it is still an observational
study and not a randomized experiment.
REFERENCES
Hernán MA. The C-Word: scientific euphemisms do not improve causalinference from observational data. Am J Public Health. 2018;108(5):616-9.https://doi.org/10.2105/AJPH.2018.304337
Hernán MA. A definition of causal effect for epidemiological research. JEpidemiol Community Health. 2004;58(4):265-71. https://doi.org/10.1136/jech.2002.006361
Hernán MA. Methods of public health research – Strengthening causalinference from observational data. N Engl J Med. 2021;385(15):1345-8.https://doi.org/10.1056/NEJMp2113319
Collins R, Bowman L, Landray M, Peto R. The magic of randomizationversus the myth of real-world evidence. N Engl J Med. 2020;382(7):674-8.https://doi.org/10.1056/NEJMsb1901642
Murad MH, Asi N, Alsawas M, Alahdab F. New evidence pyramid. EvidBased Med. 2016;21(4):125-7. https://doi.org/10.1136/ebmed-2016-110401
Hernán MA, Robbins J. Causal inference: what if. Boca Raton: Chapman& Hall/CRC, 2024 [citado mayo, 2024]. Disponible en: https://www.hsph.harvard.edu/miguel-hernan/wp-content/uploads/sites/1268/2024/01/hernanrobins_WhatIf_2jan24.pdf
Hernán MA, Alonso A, Logan R, Grodstein F, Michels K, Willett W,et al. Observational studies analyzed like randomized experiments: anapplication to postmenopausal hormone therapy and coronary heartdisease. Epidemiology. 2008;19(6):766-79. https://doi.org/10.1097/EDE.0b013e3181875e61
Dickerman BA, García-Albéniz X, Logan RW, Denaxas S, Hernán MA.Avoidable flaws in observational analyses: an application to statins andcancer. Nat Med. 2019;25(10):1601-6. https://doi.org/10.1038/s41591-019-0597-x
Hernán MA, Taubman SL. Does obesity shorten life? The importanceof well-defined interventions to answer causal questions. Int J Obes.2008;32(S3):S8-14. https://doi.org/10.1038/ijo.2008.82
Lajous M. Inferencia causal en análisis basados en datos de vigilanciaepidemiológica para Covid-19. Salud Publica Mex. 2021;63(4):459-60.https://doi.org/10.21149/12777
Lodi S, Phillips A, Logan R, Olson A, Costagliola D, Abgrall S, et al.Comparative effectiveness of immediate antiretroviral therapy versusCD4-based initiation in HIV-positive individuals in high-income countries:observational cohort study. Lancet HIV. 2015;2(8):e335-43. https://doi.org/10.1016/S2352-3018(15)00108-3
The HIV-CAUSAL Collaboration. When to initiate combined antiretroviraltherapy to reduce mortality and AIDS-defining illness in HIV-infectedpersons in developed countries: an observational study. Ann Intern Med.2011;154(8):509. https://doi.org/10.7326/0003-4819-154-8-201104190-00001
The INSIGHT START Study Group. Initiation of antiretroviral therapyin early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795-807.https://doi.org/10.1056/NEJMoa1506816
Hernán MA, Sauer BC, Hernández-Díaz S, Platt R, Shrier I. Specifyinga target trial prevents immortal time bias and other self-inflicted injuriesin observational analyses. J Clin Epidemiol. 2016;79:70-5. https://doi.org/10.1016/j.jclinepi.2016.04.014
Matthews AA, Danaei G, Islam N, Kurth T. Target trial emulation:applying principles of randomised trials to observational studies. BMJ.2022;378:e071108. https://doi.org/10.1136/bmj-2022-071108
Hernán MA, Robins JM. Using big data to emulate a target trial when arandomized trial is not available: table 1. Am J Epidemiol. 2016;183(8):758-64. https://doi.org/10.1093/aje/kwv254
Danaei G, Rodríguez LAG, Cantero OF, Logan R, Hernán MA.Observational data for comparative effectiveness research: an emulationof randomised trials of statins and primary prevention of coronaryheart disease. Stat Methods Med Res. 2013;22(1):70-96. https://doi.org/10.1177/0962280211403603
Matthews AA, Young JC, Kurth T. The target trial framework in clinicalepidemiology: principles and applications. J Clin Epidemiol. 2023;164:112-5.https://doi.org/10.1016/j.jclinepi.2023.10.008
Ford I, Norrie J. Pragmatic trials. Drazen JM, Harrington DP, McMurrayJJV, Ware JH, Woodcock J, eds. N Engl J Med. 2016;375(5):454-63. https://doi.org/10.1056/NEJMra1510059
Dahabreh IJ, Bibbins-Domingo K. Causal inference about the effectsof interventions from observational studies in medical journals. JAMA.2024;331(21):1845. https://doi.org/10.1001/jama.2024.7741
Dahabreh IJ, Metthews A, Steingrimsson J, Scharfstein D, Stuart EA.Using trial and observational data to assess effectiveness: trial emulation,transportability, benchmarking, and joint analysis. Epidemiol Rev. 2023;mxac011. https://doi.org/10.1093/epirev/mxac011
Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updatedguidelines for reporting parallel group randomized trials. BMC Medicine.2010;152(11):726-32. https://doi.org/10.1186/1741-7015-8-18
Hansford HJ, Cashin AG, Jones MD, Swanson SA, Islam N, Douglas SRG,et al. Reporting of observational studies explicitly aiming to emulate randomizedtrials: a systematic review. JAMA Netw Open. 2023;6(9):e2336023.https://doi.org/10.1001/jamanetworkopen.2023.36023
Núñez I, Soto-Mota A. Uneven resources threaten causal consistencyin randomized trials. Epidemiology. 2023;34(4):531-4. https://doi.org/10.1097/EDE.0000000000001616
Dang LE, Balzer LB. Start with the target trial protocol, then follow theroadmap for causal inference. Epidemiology. 2023;34(5):619-23. https://doi.org/10.1097/EDE.0000000000001637
Núñez I. Canine confounders. Significance. 2022;19(4):24-7. https://doi.org/10.1111/1740-9713.01670
VanderWeele TJ, Shpitser I. A new criterion for confounder selection.Biometrics. 2011;67(4):1406-13. https://doi.org/10.1111/j.1541-0420.2011.01619.x
Núñez I. The importance of using disease causal models in studies ofpreventive interventions: learning from preeclampsia research. Prev Med.2023;177:107790. https://doi.org/10.1016/j.ypmed.2023.107790
Núñez I, Belaunzarán-Zamudio PF. Preventable sources of bias in subgroupanalyses and secondary outcomes of randomized trials. ContempClin Trials. 2024;145:107641. https://doi.org/10.1016/j.cct.2024.107641
Rudolph KE, Keyes KM. Voluntary firearm divestment and suiciderisk: real- world importance in the absence of causal identification.Epidemiology. 2023; 34(1):107-10. https://doi.org/10.1097/EDE.0000000000001548
Suissa S. Immortal time bias in pharmacoepidemiology. Am J Epidemiol.2008;167(4):492-9. https://doi.org/10.1093/aje/kwm324
Núñez I, Caro-Vega Y, MacDonald C, Mosqueda JL, Piñeirúa-Menéndez,Matthews AA. Comparative effectiveness of switching to bictegravir fromdolutegravir, efavirenz, or raltegravir-based antiretroviral therapy amongvirologically suppressed individuals with HIV. Open Forum Infect Dis.2024;11(8):ofae446. https://doi.org/10.1093/ofid/ofae446
Howe CJ, Cole SR, Lau B, Napravnik S, Eron JJ. Selection bias due toloss to follow up in cohort studies. Epidemiology. 2016;27(1):91-7. https://doi.org/10.1097/EDE.0000000000000409
Millard LAC, Fernández-Sanlés A, Carter AR, Hughes RA, Tilling K, MorrisTP, et al. Exploring the impact of selection bias in observational studiesof COVID-19: a simulation study. Int J Epidemiol. 2023;52(1):44-57. https://doi.org/10.1093/ije/dyac221
Haneuse S, Arterburn D, Daniels MJ. Assessing missing data assumptions inEHR-based studies: a complex and underappreciated task. JAMA Netw Open.2021;4(2):e210184. https://doi.org/10.1001/jamanetworkopen.2021.0184
Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing datain statistical analyses: multiple imputation is not always the answer. Int JEpidemiol. 2019;48(4):1294-304. https://doi.org/10.1093/ije/dyz032
Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat incomparative effectiveness research. Clin Trials. 2012;9(1):48-55. https://doi.org/10.1177/1740774511420743
Hernán MA, Robins JM. Per-protocol analyses of pragmatic trials. NEngl J Med. 2017;377(14):1391-8. https://doi.org/10.1056/NEJMsm1605385
Murray EJ, Caniglia EC, Swanson SA, Hernández-Díaz S, Hernán MA.Patients and investigators prefer measures of absolute risk in subgroupsfor pragmatic randomized trials. J Clin Epidemiol. 2018;103:10-21. https://doi.org/10.1016/j.jclinepi.2018.06.009
Hernán MA, Del Amo J. Drug repurposing and observational studies:the case of antivirals for the treatment of COVID-19. Ann Intern Med.2023;176(4):556-60. https://doi.org/10.7326/M22-3582
Swanson SA, Studdert DM, Zhang Y, Prince L, Miller M. Handgundivestment and risk of suicide. Epidemiology. 2023;34(1):99-106. https://doi.org/10.1097/EDE.0000000000001549
Matthews AA, Dahabreh IJ, Fröbert O, Lindahl B, James S, Feychting M,et al. Benchmarking observational analyses before using them to addressquestions trials do not answer: an application to coronary thrombusaspiration. Am J Epidemiol. 2022;191(9):1652-65. https://doi.org/10.1093/aje/kwac098