2024, Number 3
<< Back
Investigación en Discapacidad 2024; 10 (3)
Gout, a current metabolic disease: comorbidities and new therapies
Paniagua-Díaz N, Fernández-Torres J, Zamudio-Cuevas Y, Martínez-Flores K, Pérez-Ruiz MF, López-Macay A
Language: Spanish
References: 61
Page: 211-220
PDF size: 308.26 Kb.
ABSTRACT
Gout is a multifactorial metabolic disease associated with hyperuricemia, metabolic syndrome, obesity, hypertension, hypertriglyceridemia and hypercholesterolemia. Traditional treatment has long focused on controlling clinical manifestations such as acute pain, redness and edema of the patient through the use of uric acid synthesis inhibitors, colchicine and non-steroidal anti-inflammatory drugs. Currently, new medications focused on the excretion-reabsorption control of uric acid are considered. In many countries it is considered that cases of gout have been increasing over the last decade, some suggest that this may be due to the increase in metabolic diseases such as obesity and diabetes but also to the presence of metabolic syndrome. In Mexico, in recent years hyperuricemia and hypertension have increased along with obesity and diabetes in both children and adults. This review is aimed at showing the importance of treating comorbidities in patients with gout as an important part of preventing and combating the disease while controlling inflammation and hyperuricemia. In countries like Mexico where obesity, diabetes and cardiovascular diseases are a health problem, it is important to consider that the prevalence of gout may increase rapidly in the coming years. In countries like Mexico where obesity, diabetes and cardiovascular diseases are a health problem, it is important to consider that the prevalence of gout may increase rapidly in the coming years. The correct diagnosis and follow-up of the patient is essential for the control of the disease, so recognizing gout as a multifactorial disease, where there are various factors that favor inflammation, will help design better therapeutic strategies.
REFERENCES
Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015; 11 (11): 649-662.
Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020; 16 (7): 380-390.
Danve A, Sehra ST, Neogi T. Role of diet in hyperuricemia and gout. Best Pract Res Clin Rheumatol. 2021; 35 (4): 101723.
Hernández-Cuevas CB, Roque LH, Huerta-Sil G, Rojas-Serrano J, Escudero A, Perez LL et al. First acute gout attacks commonly precede features of the metabolic syndrome. J Clin Rheumatol. 2009; 15 (2): 65-67.
Witt M, Schulze-Koops H. Hyperuricemia and gout: new aspects of an old disease. Internist (Berl). 2016; 57 (7): 656-665.
Singh G, Lingala B, Mithal A. Gout and hyperuricaemia in the USA: prevalence and trends. Rheumatology (Oxford). 2019; 58 (12): 2177-2180.
Peláez-Ballestas I, Sanin LH, Moreno-Montoya J, Alvarez-Nemegyei J, Burgos-Vargas R, Garza-Elizondo M et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl. 2011; 86: 3-8.
García-Méndez S, Arreguín-Reyes R, López-López O, Vázquez-Mellado J. Frequency of gout according to the perception of physicians in México. Reumatol Clin. 2014; 10 (3): 197-198.
Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019; 71 (6): 991-999.
Natsuko PD, Laura SC, Denise CC, Lucio VR, Carlos AS, Fausto SM et al. Differential gene expression of ABCG2, SLC22A12, IL-1β, and ALPK1 in peripheral blood leukocytes of primary gout patients with hyperuricemia and their comorbidities: a case-control study. Eur J Med Res. 2022; 27 (1): 62.
Perez-Ruiz F, Castillo E, Chinchilla SP, Herrero-Beites AM. Clinical manifestations and diagnosis of gout. Rheum Dis Clin North Am. 2014; 40 (2): 193-206.
Eggebeen AT. Gout: an update. Am Fam Physician. 2007; 76 (6): 801-808.
Ahmad MI, Masood S, Furlanetto DM, Nicolaou S. Urate crystals; beyond joints. Front Med (Lausanne). 2021; 8: 649505.
Afinogenova Y, Danve A, Neogi T. Update on gout management: what is old and what is new. Curr Opin Rheumatol. 2022; 34 (2): 118-124.
Yakupova SP. Gout. New opportunities of diagnosis and treatment. Ter Arkh. 2018; 90 (5): 88-92.
Saag KG, Khanna PP, Keenan RT, Ohlman S, Osterling Koskinen L et al. A randomized, phase II study evaluating the efficacy and safety of anakinra in the treatment of gout flares. Arthritis Rheumatol. 2021; 73 (8): 1533-1542.
Saad Shaukat MH, Shabbir MA, Singh S, Torosoff M, Peredo-Wende R. Correction to: Anakinra for colchicine-intolerant/colchicine-resistant acute gout flare precipitated by decompensated heart failure. Ir J Med Sci. 2021; 190 (1): 453.
FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020; 72 (6): 744-760. Erratum in: Arthritis Care Res (Hoboken). 2020; 72 (8): 1187. Erratum in: Arthritis Care Res (Hoboken). 2021; 73 (3): 458.
Zhang Y, Chen S, Yuan M, Xu Y, Xu H. Gout and diet: a comprehensive review of mechanisms and management. Nutrients. 2022; 14 (17): 3525.
Cohen RE, Pillinger MH, Toprover M. Something old, something new: the ACR gout treatment guideline and its evolution from 2012 to 2020. Curr Rheumatol Rep. 2020; 23 (1): 4.
Quintana MJ, Shum AZ, Folse MS, Ramesh PC, Ahmadzadeh S, Varrassi G et al. Gout treatment and clinical considerations: the role of pegloticase, colchicine, and febuxostat. Cureus. 2023; 15 (10): e46649.
Schlesinger N, Lipsky PE. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin Arthritis Rheum. 2020; 50 (3S): S31-S38.
Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol. 2023; 14: 1137822.
He H, Jiang H, Chen Y et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018; 9: 2550.
Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum. 2020; 50 (3S): S24-S30.
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000; 894: i-xii, 1-253.
Thottam GE, Krasnokutsky S, Pillinger MH. Gout and metabolic syndrome: a tangled web. Curr Rheumatol Rep. 2017; 19 (10): 60.
Sumpter NA, Saag KG, Reynolds RJ, Merriman TR. Comorbidities in gout and hyperuricemia: causality or epiphenomena? Curr Opin Rheumatol. 2020; 32 (2): 126-133.
Choi HK, McCormick N, Yokose C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat Rev Rheumatol. 2022; 18 (2): 97-111.
Kimura Y, Tsukui D, Kono H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int J Mol Sci. 2021; 22 (22): 12394.
Choi HK, Atkinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med. 2005; 165 (7): 742-748.
Juraschek SP, Miller ER 3rd, Gelber AC. Body mass index, obesity, and prevalent gout in the United States in 1988-1994 and 2007-2010. Arthritis Care Res (Hoboken). 2013; 65 (1): 127-132.
Kedar E, Simkin PA. A perspective on diet and gout. Adv Chronic Kidney Dis. 2012; 19 (6): 392-397.
Torralba KD, De Jesus E, Rachabattula S. The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions. Int J Rheum Dis. 2012; 15 (6): 499-506.
Wang Y, Yang R, Cao Z, Han S, Han T, Jiang W et al. The association of food groups and consumption time with hyperuricemia: the U.S. National Health and Nutrition Examination Survey, 2005-2018. Nutrients. 2023; 15 (14): 3109.
Rho YH, Zhu Y, Choi HK. The epidemiology of uric acid and fructose. Semin Nephrol. 2011; 31 (5): 410-419.
Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI et al. Uric acid and hypertension: an update with recommendations. Am J Hypertens. 2020; 33 (7): 583-594.
Zhang C, Li L, Zhang Y, Zeng C. Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother. 2020; 131: 110795.
Batt C, Phipps-Green AJ, Black MA, Cadzow M, Merriman ME, Topless R et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis. 2014; 73 (12): 2101-2106.
Lukkunaprasit T, Rattanasiri S, Turongkaravee S, Suvannang N, Ingsathit A, Attia J et al. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC Med Genet. 2020; 21 (1): 210.
Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015; 77: 323-345.
Estiverne C, Mandal AK, Mount DB. Molecular pathophysiology of uric acid homeostasis. Semin Nephrol. 2020; 40 (6): 535-549.
Almeida C, Neves MC, Freire MG. Towards the use of adsorption methods for the removal of purines from beer. Molecules. 2021; 26 (21): 6460.
Cornelis MC, Munafo MR. Mendelian randomization studies of coffee and caffeine consumption. Nutrients. 2018; 10 (10): 1343.
Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016; 213: 8-14.
Yang B, Xin M, Liang S, Xu X, Cai T, Dong L et al. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022; 13: 1026246.
Sakkinen PA, Wahl P, Cushman M, Lewis MR, Tracy RP. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol. 2000; 152 (10): 897-907.
Toyoki D, Shibata S, Kuribayashi-Okuma E, Xu N, Ishizawa K, Hosoyamada M et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 2017; 313 (3): F826-F834.
Nakamura T. Historical review of gout and hyperuricemia investigations. Nihon Rinsho. 2008; 66 (4): 624-635.
Pérez Ruiz F. Gout: past, present, and future. Reumatol Clin. 2011; 7 (4): 217-219.
Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol. 2019; 316 (1): F173-F185.
Arakawa H, Amezawa N, Kawakatsu Y, Tamai I. Renal reabsorptive transport of uric acid precursor xanthine by URAT1 and GLUT9. Biol Pharm Bull. 2020; 43 (11): 1792-1798.
Zhu W, Deng Y, Zhou X. Multiple membrane transporters and some immune regulatory genes are major genetic factors to gout. Open Rheumatol J. 2018; 12: 94-113.
García-Nieto VM, Claverie-Martín F, Moraleda-Mesa T, Perdomo-Ramírez A, Tejera-Carreño P, Cordoba-Lanus E et al. La gota asociada a reducción de la excreción renal de ácido úrico. Esa tubulopatía que no tratamos los nefrólogos. Nefrologia. 2022; 42 (3): 273-279.
Jing J, Ekici AB, Sitter T, Eckardt KU, Schaeffner E, Li Y et al. Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Sci Rep. 2018; 8 (1): 13184.
Lee CP, Chiang SL, Ko AM, Liu YF, Ma C, Lu CY et al. ALPK1 phosphorylates myosin IIA modulating TNF-α trafficking in gout flares. Sci Rep. 2016; 6: 25740.
Pineda C, Fuentes-Gómez AJ, Hernández-Díaz C, Zamudio-Cuevas Y, Fernández-Torres J, López-Macay A et al. Animal model of acute gout reproduces the inflammatory and ultrasonographic joint changes of human gout. Arthritis Res Ther. 2015; 17 (1): 37.
Kim KW, Kim BM, Lee KA, Kim HS, Lee SH, Kim HR. Reciprocal interaction between macrophage migration inhibitory factor and interleukin-8 in gout. Clin Exp Rheumatol. 2019; 37 (2): 270-278.
Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016; 388 (10055): 2039-2052.
Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021; 397 (10287): 1843-1855.
Shi C, Zhou Z, Chi X, Xiu S, Yi C, Jiang Z et al. Recent advances in gout drugs. Eur J Med Chem. 2023; 245 (Pt 1): 114890.