2024, Number 3
<< Back Next >>
Rev Educ Bioquimica 2024; 43 (3)
Origen y evolución de las rutas metabólicas
Córdova-Villalba G, Becerra A
Language: Spanish
References: 33
Page: 141-150
PDF size: 989.97 Kb.
ABSTRACT
The study of the early evolution of life raises fundamental questions in biology, addressing issues such as the origin of life and the evolution of essential cellular and metabolic processes. Thanks to advanced sequencing and bioinformatics techniques, comparative genomics can be carried out, allowing hypotheses related to these crucial phases for the development of life to be inferred and tested. In this context, this work highlights the importance of fundamental concepts about the origin, assembly, and evolution of meta-bolic pathways proposed by scientists over time. Among these, the "Granik hypothesis," Horowitz's proposal, and the concept of "patchwork" stand out. Furthermore, the intriguing notion of the "semi-enzymatic origin" of meta-bolic pathways, which suggests that simple metabolic processes gave rise to components essential for life, is explored. The text also examines the transi-tion from heterotrophic organisms to more complex life forms, proposing genome expansion as a critical mechanism for this purpose. This process is achieved through gene duplication and DNA sequence divergence, which provides knowledgeable insight into the evolution of biological complexity.
REFERENCES
Peretó J. Out of fuzzy chemistry: From prebioticchemistry to metabolic networks. Chem Soc Rev.2012;41(16):5394–403.
Peretó J. Controversial research topics on theorigin of life. Int Microbiol. 2005;8:23–31.
Horowitz NH. On the evolution of biochemicalsyntheses. PNAS. 1945;31(6):153–7.
Granick S. Speculations on the origins andevolution of photosynthesis. Ann N Y Acad Sci.1957;69(2):292–308.
Yčas M. On earlier states of the biochemicalsystem. J Theor Biol. 1974;44(1):145–60.
Jensen RA. Enzyme recruitment in evolution ofnew function. Annu Rev Microbiol. 1976;30:409–25.
Lazcano A, Miller SL. On the origin of meta-bolic pathways. J Mol Evol. 1999;49(4):424–31.
Becerra A. The Semi-Enzymatic Origin of Met-abolic Pathways: Inferring a Very Early Stage of theEvolution of Life. J Mol Evol. 2021;89(3):183–8.
Oparin AI. The origin of life. Nueva York:MacMillan; 1938.
Fani R, Fondi M. Origin and evolution of meta-bolic pathways. Phys Life Rev. 2009;6(1):23–52.
Beadle GW, Tatum EL. Genetic control ofbiochemical reactions in nerospora. PNAS.1941;27:499–506.
Scossa F, Fernie AR. The evolution ofmetabolism: How to test evolutionary hypothesesat the genomic level. Comput Struct Biotechnol J.2020;18:482–500.
Fani R, Liò P, Chiarelli I, Bazzicalupo M. TheEvolution of the Histidine Biosynthetic Genes inProkaryotes: A Common Ancestor for the hisA andhisF Genes. J Mol Evol. 1994;38:489–95.
Shen C, Yang L, Miller SL, Oro J. Prebioticsynthesis of histidine. J Mol Evol. septiembre de1990;31(3):167–74.
White DH, Erickson JC. Catalysis of peptidebond formation by histidyl-histidine in afluctuating clay environment. J Mol Evol.diciembre de 1980;16(3–4):279–90.
Fani R, Tamburini E, Mori E, Lazcano A, LiòP, Barberio C, et al. Paralogous histidine bio-synthetic genes: evolutionary analysis of theSaccharomyces cerevisiae HIS6 and HIS7 genes.Gene. el 15 de septiembre de 1997;197(1–2):9–17.
Lazcano A, Diaz-Villagómez E, Mills T, OróJ.On the levels of enzymatic substrate specificity:implications for the early evolution of metabolicpathways. Adv Space Res. 1995;15(3):345–56.
Noda-Garcia L, Liebermeister W, Tawfik DS.Metabolite-Enzyme Coevolution: From SingleEnzymes to Metabolic Pathways and Networks.Annu Rev Biochem. 2018;87:187–216.
Granick S. Evolution of Heme andChlorophyll. En: Evolving Genes and Proteins.Nueva York: Academic Press; 1965. p. 67–88.
Minguet EG, Vera-Sirera F, Marina A,Carbonell J, Blázquez MA. Evolutionarydiversification in polyamine biosynthesis. Mol BiolEvol. 2008;25(10):2119–28.
Ourisson G, Nakatani Y. The terpenoid theory ofthe origin of cellular life: the evolution of terpenoidsto cholesterol. Chem Biol. 1994;1(1):11–23.
Fani R. Gene Duplication and Gene Loading.En: Microbial Evolution: gene establishment,survival, and exchange. Washington, DC: JohnWiley & Sons, Ltd; 2004. p. 67–81.
Takiguchi M, Matsubasa T, Amaya Y, MoriM.Evolutionary aspects of urea cycle enzymegenes. BioEssays News Rev Mol Cell Dev Biol.1989;10(5):163–6.
Copley SD. Evolution of a metabolic pathwayfor degradation of a toxic xenobiotic: thepatchwork approach. Trends Biochem Sci.2000;25(6):261–5.
Meléndez-Hevia E, Waddell TG, Cascante M.The puzzle of the Krebs citric acid cycle: assem-bling the pieces of chemically feasible reactions,and opportunism in the design of metabolicpathways during evolution. J Mol Evol.1996;43(3):293–303.
Fani R, Liò P, Lazcano A. Molecular evolutionof the histidine biosynthetic pathway. J Mol Evol.1995;41(6):760–74.
Fani R, Mori E, Tamburini E, Lazcano A.Evolution of the structure and chromosomaldistribution of histidine biosynthetic genes. OrigLife Evol Biosph. 1998;28(4–6):555–70.
Xie G, Keyhani NO, Bonner CA, Jensen RA.Ancient Origin of the Tryptophan Operon and theDynamics of Evolutionary Change. Microbiol MolBiol Rev. 2003;67(3):303–42.
Fani R, Gallo R, Liò P. Molecular evolution ofnitrogen fixation: The evolutionary history of thenifD, nifK, nifE, and nifN genes. J Mol Evol.2000;51(1):1–11.
Smith DW, Ames BN. Intermediates in theearly steps of histidine biosynthesis. J Biol Chem.1964;239:1848–55.
Rieder G, Merrick MJ, Castorph H, Kleiner D.Function of hisF and hisH gene products in histidinebiosynthesis. J Biol Chem. 1994;269(20):14386–90.
Vázquez-Salazar A, Becerra A, Lazcano A.Evolutionary convergence in the biosyntheses ofthe imidazole moieties of histidine and purines.PloS One. 2018;13(4):e0196349.
Cornish-Bowden A, Cárdenas ML, Letelier JC,Soto-Andrade J. Beyond reductionism: Metaboliccircularity as a guiding vision for a real biology ofsystems. Proteomics. 2007;7(6):839–45.