2024, Number 4
<< Back Next >>
Med Crit 2024; 38 (4)
New antioxidant therapies for myocardial ischemia-reperfusion injury
Bribiesca VBE
Language: Spanish
References: 22
Page: 289-293
PDF size: 324.74 Kb.
ABSTRACT
Myocardial ischemia-reperfusion injury remains a devastating complication for patients with cardiovascular diseases. This phenomenon occurs when blood flow to the heart is interrupted (ischemia) and subsequently restored (reperfusion), paradoxically causing additional damage to cardiac tissue due to the massive production of reactive oxygen species (ROS), which generates oxidative stress and cellular damage. Despite advances in ischemia treatment, the restoration of blood flow during reperfusion can further trigger oxidative stress and tissue damage. Understanding and mitigating this damage is crucial for improving clinical outcomes in patients experiencing acute cardiac events. In this review, we explore the new antioxidant therapies developed to address myocardial ischemia-reperfusion injury, ranging from pharmacological agents to innovative approaches based on regenerative medicine and tissue engineering. These strategies aim to neutralize ROS and minimize oxidative stress, with the goal of significantly reducing cellular damage and enhancing cardiac tissue recovery.
REFERENCES
Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76(5):1713-1719. doi: 10.1172/JCI112160.
Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res. 2009;81(3):449-456. doi: 10.1093/cvr/cvn280.
Abad C, Castaño-Ruiz M, Clavo B, Urso S. Daño por isquemia-reperfusión miocárdico en cirugía cardiaca con circulación extracorpórea. Aspectos bioquímicos. Cir Cardiov. 2018;25(2):112-117.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613.
Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181-H2190. doi: 10.1152/ajpheart.00554.2011.
Raghu G, Berk M, Campochiaro PA, Jaeschke H, Marenzi G, Richeldi L, et al. The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr Neuropharmacol. 2021;19(8):1202-1224. doi: 10.2174/1570159X19666201230144109.
Ozawa H, Miyazawa T, Burdeos GC, Miyazawa T. Biological functions of antioxidant dipeptides. J Nutr Sci Vitaminol (Tokyo). 2022;68(3):162-171. doi: 10.3177/jnsv.68.162.
Zinovkin RA, Zamyatnin AA. Mitochondria-targeted drugs. Curr Mol Pharmacol. 2019;12(3):202-214. doi: 10.2174/1874467212666181127151059.
Férez Santander SM, Márqueza MF, Peña Duque MA, Ocaranza Sánchez R, de la Peña Almaguer E, Eid Lidta G. Daño miocárdico por reperfusión. Rev Esp Cardiol. 2004;57 Suppl 1:9-21. doi: 10.1157/13067415.
Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61(3):365-371. doi: 10.1016/j.cardiores.2003.12.012.
Baraas F, Rilantono L, Diniharini S, Kurniawan I, Christian R, Kusmana D. Effect of short-term low-intensity exercise training on association of oxygen free radicals and nitric oxide production in patients with acute myocardial infarction. Int J Angiol. 2013;22(3):159-164. doi: 10.1055/s-0033-1348881.
Cesak O, Vostalova J, Vidlar A, Bastlova P, Student V Jr. Carnosine and beta-alanine supplementation in human medicine: narrative review and critical assessment. Nutrients. 2023;15(7):1770. doi: 10.3390/nu15071770.
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98(5):1323-1367. doi: 10.1007/s00204-024-03696-4.
Wei Q, Xiao Y, Du L, Li Y. Avances en nanopartículas en la prevención y el tratamiento del infarto de miocardio. Moléculas. 2024;29(11):2415. doi: 10.3390/molecules29112415.
Smith R, Murphy M. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96-103. doi: 10.1111/j.1749-6632.2010.05627.
Dare AJ, Logan A, Prime TA, Rogatti S, Goddard M, Bolton EM, et al. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J Heart Lung Transplant. 2015;34(11):1471-1480. doi: 10.1016/j.healun.2015.05.007.
Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71(6):1056-1063. doi: 10.1161/HYPERTENSIONAHA.117.10787.
Expósito J, Natera D, Carrera L, Armijo J, Ríos A, Nascimento A, et al. Terapia génica: ¿Dónde estamos?, ¿A dónde vamos? Medicina (B. Aires). 2023;83(supl.4):13-17.
Argiro A, Ding J, Adler E. Gene therapy for heart failure and cardiomyopathies. Rev Esp Cardiol. 2023;76(12):1042-1054. doi: 10.1016/j.rec.2023.06.009.
Santos-Buelga C. Polyphenols and human beings: from epidemiology to molecular targets. Molecules. 2021;26(14):4218. doi: 10.3390/molecules26144218.
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019;20(7):1523. doi: 10.3390/ijms20071523.
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int. 2017;2017:5813793. doi: 10.1155/2017/5813793.