2022, Number 3
Biotecnol Apl 2022; 39 (3)
Novel molecular events related to CIGB-300 antineoplastic mechanism of action
Perea RSE, Perera NY, Rodríguez UA, Ramos GY, Rosales MM, Padrón PG, Caballero ME, Guirola CO, Musacchio LA, Fernández CJ, González LLJ, Besada LV, Pérez VGV, Aguilar ND, Vázquez BDM, Ramón SAC
Language: Spanish
References: 28
Page: 3501-3505
PDF size: 588.53 Kb.
ABSTRACT
CIGB-300 is an antitumor peptide that inhibits the CK2-mediated phos¬phorylation by direct targeting of substrates. This paper aims to describe breakthroughs about the CIGB-300 antineoplastic mechanism related to the inhibition of CK2-mediated phosphorylation and the synergism with anticancer drugs. CK2 phosphorylation assays were performed with catalytic CK2α subunit or the CK2 holoenzyme in presence or not of CIGB-300. CIGB-300/CK2 interaction was verified by pull-down experiments, in situ colocalization and phosphoproteomic analysis of CIGB-300-treated lung cancer cells were also performed. Synergism of the peptide with anticancer drugs was evaluated in vitro and for Cisplatin; it was also tested in vivo. Besides, comparative proteomics of CIGB-300 combined with Cisplatin was conducted. CIGB-300 targeted the CK2α subunit and inhi-bited the enzymatic activity of the holoenzyme in different experimental settings. Likewise, phosphoproteomic and Western Blot analysis allowed for knowing the early CK2 inhibition profile elicited by CIGB-300 at 10 and 30 min of treatment. Moreover, CIGB-300 did synergize with chemotherapeutics and EGFR inhibitors, and molecular events that reportedly support such synergistic interactions were also known. CIGB-300 inhibits the CK2-mediated phosphorylation by using an alternative mechanism of direct interaction with the enzyme itself. Besides, CIGB-300 synergizes with chemotherapeutics and EGFR inhibitors by modulating different proteins related to drug resistance.
REFERENCES
Salvi M, Cesaro L, Pinna LA. Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomol Concepts. 2010;1(2):185-95.
Ruzzene M, Pinna LA. Addiction to proteinkinase CK2: a common denominatorof diverse cancer cells? Biochim BiophysActa. 2010;1804(3):499-504.
Barata JT. The impact of PTEN regulationby CK2 on PI3K-dependent signalingand leukemia cell survival. Adv EnzymeRegulat. 2011;51(1):37-49.
Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, et al. ACK2-dependent mechanism for degradationof the PML tumor suppressor. Cell.2006;126(2):269-83.
Di Maira G, Salvi M, Arrigoni G, MarinO, Sarno S, Brustolon F, et al. Protein kinaseCK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12(6):668-77.
Channavajhala P, Seldin DC. Functionalinteraction of protein kinase CK2 andc-Myc in lymphomagenesis. Oncogene.2002;21(34):5280-8.
Chua MM, Ortega CE, Sheikh A, LeeM, Abdul-Rassoul H, Hartshorn KL, et al.CK2 in cancer: Cellular and biochemicalmechanisms and potential therapeutictarget. Pharmaceuticals. 2017;10(1):18.
Pinna LA. Protein kinase CK2: a challengeto canons. J Cell Sci. 2002;115(Pt20):3873-8.
Núñez de Villavicencio-Díaz T, MazolaY, Perera Negrín Y, Cruz García Y, GuirolaCruz O, Perea Rodríguez SE. PredictingCK2 beta-dependent substrates usinglinear patterns. Biochem Biophys Rep.2015;4:20-7.
Siddiqui-Jain A, Drygin D, StreinerN, Chua P, Pierre F, O’Brien SE, et al.CX-4945, an orally bioavailable selectiveinhibitor of protein kinase CK2, inhibitsprosurvival and angiogenic signaling andexhibits antitumor efficacy. Cancer Res.2010;70(24):10288-98.
Laudet B, Barette C, Dulery V, RenaudetO, Dumy P, Metz A, et al. Structure-baseddesign of small peptide inhibitors of proteinkinase CK2 subunit interaction. Biochem J.2007;408(3):363-73.
Slaton JW, Unger GM, Sloper DT,Davis AT, Ahmed K. Induction of apoptosisby antisense CK2 in human prostatecancer xenograft model. Mol Cancer Res.2004;2(12):712-21.
Perea SE, Reyes O, Puchades Y,Mendoza O, Vispo NS, Torrens I, et al.Antitumor effect of a novel proapoptoticpeptide that impairs the phosphorylationby the protein kinase 2 (casein kinase 2).Cancer Res. 2004;64(19):7127-9.
Perera Y, Farina HG, Gil J, Rodriguez A,Benavent F, Castellanos L, et al. Anticancerpeptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediatedphosphorylation, and leads to apoptosisthrough its nucleolar disassembly activity.Mol Canc Ther. 2009;8(5):1189-96.
Perea SE, Baladron I, Garcia Y, PereraY, Lopez A, Soriano JL, et al. CIGB-300, asynthetic peptide-based drug that targetsthe CK2 phosphoaceptor domain. Mol CellBiochem. 2011;356(1-2):45-50.
Martins LR, Perera Y, Lúcio P, SilvaMG, Perea SE, Barata JT. Targeting chroniclymphocytic leukemia using CIGB-300,a clinical-stage CK2-specific cell-permeablepeptide inhibitor. Oncotarget.2014;5(1):258-63.
Boldyreff B, James P, Staudenmann W,Issinger OG. Ser2 is the autophosphorylationsite in the beta subunit from bicistronicallyexpressed human casein kinase-2and from native rat liver casein kinase-2beta. Eur J Biochem. 1993;218(2):515-21.
Pagano MA, Sarno S, Poletto G,Cozza G, Pinna LA, Meggio F. Autophosphorylationat the regulatory beta subunitreflects the supramolecular organizationof protein kinase CK2. Mol Cell Biochem.2005;274(1-2):23-9.
Perera Y, Ramos Y, Padrón G, CaballeroE, Guirola O, Caligiuri LG, et al. CIGB-300anticancer peptide regulates the proteinkinase CK2-dependent phosphoproteome.Mol Cell Biochem. 2020;470(1-2):63-75.
Perera Y, Melão A, Ramón AC, VázquezD, Ribeiro D, Perea SE, et al. Clinical-gradepeptide-based inhibition of CK2 blocks viabilityand proliferation of T-ALL cells andcounteracts IL-7 stimulation and stromalsupport. Cancers. 2020;12(6):1377.
Perera Y, Toro ND, Gorovaya L, FernandezDECJ, Farina HG, Perea SE. Synergisticinteractions of the anti-casein kinase 2CIGB- 300 peptide and chemotherapeuticagents in lung and cervical preclinicalcancer models. Mol Clin Oncol. 2014;2(6):935-44.
Perea SE, Perera Y, Baladrón I, GonzálezL, Benavent F, Fariña HG, et al. CIGB-300:a promising anti-casein kinase 2 (CK2) peptidefor cancer targeted therapy. In: AhmedK, et al. (eds.). Protein Kinase CK2 CellularFunction in Normal and Disease States. Cham:Springer; 2015. p. 281-98.
Perea SE, Baladrón I, Valenzuela C, PereraY. CIGB-300: A peptide-based drug that impairsthe protein kinase CK2-mediated phosphorylation.Sem Oncol. 2018;45(1-2):58-67.
Borgo C, Ruzzene M. Role of protein kinaseCK2 in antitumor drug resistance. J Exp ClinCanc Res. 2019;38(1):287.
Rodriguez-Ulloa A, Ramos Y, Sanchez-Puente A, Perera Y, Musacchio-Lasa A,Fernandez-de-Cossio J, et al. The combinationof the CIGB-300 anticancer peptide andCisplatin modulates proteins related to cellsurvival, DNA repair and metastasis in alung cancer cell line model. Curr Proteomics.2019;16(4):338-49.
Jones DR, Broad RM, Madrid LV, BaldwinJr AS, Mayo MW. Inhibition of NF-κBsensitizes non–small cell lung cancer cellsto chemotherapy-induced apoptosis. AnnThoracic Surg. 2000;70(3):930-6.
Mabuchi S, Ohmichi M, Nishio Y, HayasakaT, Kimura A, Ohta T, et al. Inhibition ofNFκB increases the efficacy of cisplatin in invitro and in vivo ovarian cancer models. J BiolChem. 2004;279(22):23477-85.
Cirigliano SM, Díaz Bessone MI, BerardiDE, Flumian C, Bal de Kier Joffé ED, Perea SE,et al. The synthetic peptide CIGB-300 modulatesCK2-dependent signaling pathwaysaffecting the survival and chemoresistanceof non-small cell lung cancer cell lines. CancCell Int. 2017;17:42.