2024, Number 3
<< Back Next >>
Med Crit 2024; 38 (3)
Importance of cooximetry in multiple organ disfunction in critical illness patient. Regard clinical case spirochetes infection
Giraldo SJM
Language: Spanish
References: 41
Page: 217-221
PDF size: 296.75 Kb.
ABSTRACT
Arterial gas assessment provides critical information to the interior of intensive care units. However, recently the assessment of co-oximetry, especially carboxyhemoglobin, has been involved at the bedside of the critically ill patient as a variable relevant in inflammation and apoptosis. The accompanying hyperresponse leptospirosis followed by the immunoparalysis phase led by kinase 4 of interleukin 1 (IRAK 4) causes two highly important physiological phenomena Interesting: first, it counterregulates the protein kinase P37 mitogen (MAPKp37), and second, it modulates marginalization, diapedesis, adherence and phagocytosis of the monocyte, which generates a massive induction of heme oxygenase-1 (HO-1) providing an increase in carboxyhemoglobin (COHb) as an alternative route in its production apart from that released in the lung. Introducing the clinical case of a patient infected by spirochetes whose concentrations carboxyhemoglobin were elevated with no related pulmonary determinants.
REFERENCES
Rosenblatt WH, Abrons RO, Sukhupragarn W. Airway management. In: Barash PG, Cullen BF, Stoeltinng RK, Cahalan MK, Stock MC, Ortega R, editors. Clinical anesthesia. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2009. p. 751-777.
Finucane B, Tsui BC, Santora A. The difficult airway. In: Principles of airway management. 4th ed. Nueva York: Springer; 2011. p. 361-414.
Vincent JL. Veno-arterial PCO2 gradient. In: Vincent JL, Carlet J, Opal SM, editors. The sepsis text. Boston, Massachusetts: Kluwer Academic Publishers; 2002. p. 339-352.
Vincent JL, Teboul JL, Monnet X. Clinical use of venoarterial PCO2 difference in septic shock. In: Yearbook of intensive care and emergency medicine. Berlin, Heidelberg, Nueva York: Springer-Verlag; 2003. p. 574-582.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580-637.
Giraldo J, Figueroa H, Correa RD. Diálisis peritoneal en paciente agudo críticamente enfermo con sepsis severa por Gram negativos de origen genitourinario. Acta Colomb Cuid Intensiv. 2012;12:41-46.
Giraldo J, Vargas L, Badillo E, Correa R. Diálisis peritoneal en paciente agudo críticamente enfermo con insuficiencia renal inducida por síndrome HELLP. Acta Colomb Cuid Intensiv. 2014;14:226-229.
Petros S, Leonhardt U, Engelmann L. Serum procalcitonin and pro inflammatory cytokines in a patient with acute severe leptospirosis. Scand J Infect Dis. 2000;32:104-105.
Esteban A, Frutos F, Tobin M, Alía I, Solsona JF, Valverdú I, et al. A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med. 1995;332:345-350.
Giraldo J, Beltrán E, Pacheco J. Liberación de la ventilación mecánica con sistema de asa cerrada en asistencia proporcional en paciente con síndrome de dificultad respiratoria del adulto de origen extrapulmonar. Acta Colomb Cuid Intensiv. 2015;15:132-142.
Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis. 2015;9(9):e0003898. doi: 10.1371/journal.pntd.0003898.
Picardeau M. Leptospirosis: updating the global picture of an emerging neglected disease. PLoS Negl Trop Dis. 2015;9(9):e0004039. doi: 10.1371/journal.pntd.0004039.
Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. Vet Microbiol. 2010;140(3-4):287-296. doi: 10.1016/j.vetmic.2009.03.012.
Haake DA, Levett PN. Leptospirosis in humans. Curr Top Microbiol Immunol. 2015;387:65-97. doi: 10.1007/978-3-662-45059-8_5.
De Brito T, Silva AMGD, Abreu PAE. Pathology and pathogenesis of human leptospirosis: a commented review. Rev Inst Med Trop Sao Paulo. 2018;60:e23. doi: 10.1590/s1678-9946201860023.
Cagliero J, Villanueva SYAM, Matsui M. Leptospirosis pathophysiology: into the storm of cytokines. Front Cell Infect Microbiol. 2018;8:204.
Chirathaworn C, Supputtamongkol Y, Lertmaharit S, Poovorawan Y. Cytokine levels as biomarkers for leptospirosis patients. Cytokine. 2016;85:80-82. doi: 10.1016/j.cyto.2016.06.007.
Correa-Rotter R, Wesseling C, Johnson RJ. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am J Kidney Dis. 2014;63(3):506-520. doi: 10.1053/j.ajkd.2013.10.062.
Reis EA, Hagan JE, Ribeiro GS, Teixeira-Carvalho A, Martins-Filho OA, Montgomery RR, et al. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis. PLoS Negl Trop Dis. 2013;7(9):e2457. doi: 10.1371/journal.pntd.0002457.
Trevejo RT, Rigau-Pérez JG, Ashford DA, McClure EM, Jarquín-González C, Amador JJ, et al. Epidemic leptospirosis associated with pulmonary hemorrhage-Nicaragua, 1995. J Infect Dis. 1998;178(5):1457-1463. doi: 10.1086/314424. PMID: 9780268.
Tajiki H, Salomao R. Association of plasma levels of tumor necrosis factor alpha with severity of disease and mortality among patients with leptospirosis. Clin Infect Dis. 1996;23(5):1177-1178. doi: 10.1093/clinids/23.5.1177.
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. doi: 10.1016/j.cell.2006.02.015.
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821-832. doi: 10.1016/j.cell.2010.01.040.
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16-32. doi: 10.1128/MMBR.05015-11.
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986-1000. doi: 10.1161/ATVBAHA.110.207449.
Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011;89(6):873-891. doi: 10.1189/jlb.1010550.
Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37 Suppl 1(Suppl 1):S34-S45. doi: 10.1002/eji.200737772.
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563-2582. doi: 10.1016/j.bbamcr.2014.05.014.
Song GY, Chung CS, Chaudry IH, Ayala A. What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery. 1999;126(2):378-383.
Nahori MA, Fournié-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, Raetz CR, et al. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol. 2005;175(9):6022-6031. doi: 10.4049/jimmunol.175.9.6022.
Gomes-Solecki M, Santecchia I, Werts C. Animal models of leptospirosis: of mice and hamsters. Front Immunol. 2017;8:58. doi: 10.3389/fimmu.2017.00058.
Werts C. Interaction of leptospira with the innate immune system. Curr Top Microbiol Immunol. 2018;415:163-187. doi: 10.1007/82_2017_46.
McArdle AJ, Webbe J, Sim K, Parrish G, Hoggart C, Wang Y, et al. Determinants of carboxyhemoglobin levels and relationship with sepsis in a retrospective cohort of preterm neonates. PLoS One. 2016;11(8):e0161784. doi: 10.1371/journal.pone.0161784.
Wijayanti N, Huber S, Samoylenko A, Kietzmann T, Immenschuh S. Role of NF-kappaB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal. 2004;6(5):802-810.
Wijayanti N, Kietzmann T, Immenschuh S. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. J Biol Chem. 2005;280(23):21820-21829. doi: 10.1074/jbc.M502943200.
Hess DR. Inhaled carbon monoxide: from toxin to therapy. Respir Care. 2017;62(10):1333-1342. doi: 10.4187/respcare.05781.
Cheng Y, Rong J. Therapeutic potential of heme oxygenase-1/carbon monoxide system against ischemia-reperfusion injury. Curr Pharm Des. 2017;23(26):3884-3898. doi: 10.2174/1381612823666170413122439.
Wang G, Han D, Zhang Y, Xie X, Wu Y, Li S, et al. A novel hypothesis: up-regulation of HO-1 by activation of PPARγ inhibits HMGB1-RAGE signaling pathway and ameliorates the development of ALI/ARDS. J Thorac Dis. 2013;5(5):706-710. doi: 10.3978/j.issn.2072-1439.2013.08.69.
Kawanishi S, Takahashi T, Morimatsu H, Shimizu H, Omori E, Sato K, et al. Inhalation of carbon monoxide following resuscitation ameliorates hemorrhagic shock-induced lung injury. Mol Med Rep. 2013;7(1):3-10. doi: 10.3892/mmr.2012.1173.
Wang J, Yang H, Hu X, Fu W, Xie J, Zhou X, et al. Dobutamine-mediated heme oxygenase-1 induction via PI3K and p38 MAPK inhibits high mobility group box 1 protein release and attenuates rat myocardial ischemia/reperfusion injury in vivo. J Surg Res. 2013;183(2):509-516. doi: 10.1016/j.jss.2013.02.051.
Ni Chonghaile M, Higgins BD, Costello JF, Laffey JG. Hypercapnic acidosis attenuates severe acute bacterial pneumonia-induced lung injury by a neutrophil-independent mechanism. Crit Care Med. 2008;36(12):3135-3144. doi: 10.1097/CCM.0b013e31818f0d13.