2024, Number 3
<< Back Next >>
Med Crit 2024; 38 (3)
Mechanical power in ventilation: a new variable in lung protection or a forgotten variable? Descriptive review
Segura LV, Morales RJD, Velázquez CA, González MKI, Peña PCA, Alonso MD
Language: Spanish
References: 46
Page: 203-211
PDF size: 521.08 Kb.
ABSTRACT
Introduction: ventilator-induced lung injury (VILI) is the result of the interaction between what the ventilator delivers to the lung parenchyma and how the parenchyma accepts it, and the occurrence of this leads to significant attributable mortality in acute respiratory distress syndrome (ARDS), Mechanical Power is a variable that includes all potential causes of VILI.
Objective: to describe the importance of mechanical power (MP) in different patient populations and our current knowledge of this variable.
Conclusions: estimates of stress and strain are not readily available in the clinical setting, PM is a good surrogate of these, this formula derived from the equation of motion and currently simplified is of great utility in different patient populations developing ARDS, available at the bedside as a variable that can be included to monitor ventilator safety and guide lung protection strategies, as well as identify the development of VILI.
REFERENCES
Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2026;42:1567-1575. doi: 10.1007/s00134-016-4505-2.
Gattinoni L, Collino F, Camporota L. Mechanical power: meaning, uses and limitations. Intensive Care Med. 2023;49:465-467. doi: 10.1007/s00134-023-06991-3.
Rosas SK, Gutiérrez ZD, Cerón DUW. Asociación y valor predictivo del poder mecánico con los días libres de ventilación mecánica. Med Crit. 2017;31(6):320-325.
Rocco PR, Dos Santos C, Pelosi P. Pathophysiology of ventilator associated lung injury. Curr Opin Anaesthesiol. 2012;25(2):123-130.
Avignon PD, Hedenstrom G, Hedman C. Pulmonary complications in respirator patients. Acta Med Scand Suppl. 1956;316:86-90.
Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9S-15S.
Biehl M, Kashiouris MG, Gajic O. Ventilator-induced lung injury: minimizing its impact in patients with or at risk for ARDS. Respir Care. 2013;58(6):927-937.
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100-1108.
Cuba-Naranjo AJ, Sosa-Remón A, Jeréz-Alvarez AE. Poder mecánico, variable relacionada a la lesión pulmonar inducida por la ventilación y la mortalidad. Rev. Chil. Anest. 2023;52(1):89-94. doi: 10.25237/revchilanestv5209111522.
Vassalli F, Pasticci I, Romitti F, Duscio E, Abmann DJ, Grünhagen H, et al. Does iso-mechanical power lead to iso-lung damage?: an experimental study in a porcine model. Anesthesiology. 2020;132(5):1126-1137. doi: 10.1097/ALN.0000000000003189.
Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42:1597–1600. doi: 10.1007/s00134-016-4534-x.
Collino F, Rapetti F, Vasques F, Maiolo G, Tonetti T, Romitti F, et al. Positive end-expiratory pressure and mechanical power. Anesthesiology. 2019;130:119-130.
Protti A, Andreis DT, Milesi M, Iapichino GE, Monti M, Comini B, et al. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp. 2015;3:34.
Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556-565.
Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327-336.
Pinsky MR. The hemodynamic consequences of mechanical ventilation: an evolving story. Intensive Care Med. 1997;23:493-503.
Carmichael LC, Dorinsky PM, Higgins SB, et al. Diagnosis and therapy of acute respiratory distress syndrome in adults: an international survey. J Crit Care. 1996;11:9-18.
Lodato RF. Oxygen toxicity. In: Tobin MJ, ed. Principles and practice of mechanical ventilation. New York: McGraw-Hill, 1994: 837.
Marini JJ, Rocco PRM. Which component of mechanical power is most important in causing VILI? Crit Care. 2020;24:39. doi: 10.1186/s13054-020-2747-4.
Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi: 10.1016/j.hrtlng.2019.11.001.
Briassoulis G, Briassoulis P, Ilia S. The best PEEP or the optimal PEEP or the piece PEEP of the mechanical power puzzle? Crit Care. 2022;26:298. doi: 10.1186/s13054-022-04162-2.
Rivera-Palacios A, España JA, Gómez-González JF, Salazar-Gutiérrez G, Ávila-Reyes D, Moreno P, et al. Mechanical power measurement during mechanical ventilation of SARS-CoV-2 critically ill patients. A cohort study. Rev Colomb Anestesiol. 2022;50(4).
Azizi BA, Munoz-Acuna R, Suleiman A, Ahrens E, Redaelli S, Tartler TM, et al. Mechanical power and 30-day mortality in mechanically ventilated, critically ill patients with and without Coronavirus Disease-2019: a hospital registry study. J Intensive Care. 2023;11(1):14. doi: 10.1186/s40560-023-00662-7.
Schuijt MTU, Schultz MJ, Paulus F, Serpa-Neto A; PRoVENT–COVID Collaborative Group. Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study. Crit Care. 2021;25(1):283. doi: 10.1186/s13054-021-03710-6.
Hernández PJC, Pinedo LM. Asociación del poder mecánico con la mortalidad en pacientes con COVID-19 grave. Med Crit. 2022;36(6):357-362. doi:10.35366/107458.
Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-755. doi: 10.1056/NEJMsa1410639.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. doi: 10.1056/NEJM200005043421801.
Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566-576.
Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637-645.
Serpa-Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-1922.
Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45(6):856-864.
Guerin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care. 2016;20:384.
Parhar KKS, Zjadewicz K, Soo A, Sutton A, Zjadewicz M, Doig L, et al. Epidemiology, Mechanical Power, and 3-Year Outcomes in Acute Respiratory Distress Syndrome Patients Using Standardized Screening An Observational Cohort Study. Ann Am Thoracic Society. 2019;16:1263-1272.
Robba C, Badenes R, Battaglini D, et al. Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial. Intensive Care Med. 2022;48(8):1024-1038. doi: 10.1007/ s00134-022-06756-4.
Jiang X, Zhu Y, Zhen S, Wang L. Mechanical power of ventilation is associated with mortality in neurocritical patients: a cohort study. J Clin Monit Comput. 2022;36(6):1621-1628. doi: 10.1007/s10877-022-00805-5.
Sadowitz B, Jain S, Kollisch-Singule M, Satalin J, Andrews P, Habashi N, et al. Preemptive mechanical ventilation can block progressive acute lung injury. World J Crit Care Med. 2016;5(1):74-82.
Treschan TA, Malbouisson LM, Beiderlinden M. Intraoperative mechanical ventilation strategies to prevent postoperative pulmonary complications in patients with pulmonary and extrapulmonary comorbidities. Best Pract Res Clin Anaesthesiol. 2015;29(3):341-355.
Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM. The efects of changes in PaCO2 on cerebral blood volume, blood fow, and vascular mean transit time. Stroke. 1974;5(5):630-639.
Wahlster S, Sharma M, Taran S, Town JA, Stevens RD, Cinotti R, et al. Utilization of mechanical power and associations with clinical outcomes in brain injured patients: a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial. Crit Care. 2023;27(1):156. doi: 10.1186/s13054-023-04410-z.
Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365:1905-1914.
Chiu LC, Lin SW, Chuang LP, et al. Mechanical power during extracorporeal membrane oxygenation and hospital mortality in patients with acute respiratory distress syndrome. Crit Care. 2021;25:13. doi: 10.1186/s13054-020-03428-x.
Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, et al. The future of mechanical ventilation: lessons from the present and the past. Crit Care. 2017; 21:183.
Baptistella AR, Mantelli LM, Matte L, Carvalho MEDRU, Fortunatti JA, Costa IZ, et al. Prediction of extubation outcome in mechanically ventilated patients: Development and validation of the Extubation Predictive Score (ExPreS). PLoS ONE. 2021;16(3):e0248868.
Ghiani A, Paderewska J, Sainis A, Crispin A, Walcher S, Neurohr C. Variables predicting weaning outcome in prolonged mechanically ventilated tracheotomized patients: a retrospective study. J Intensive Care. 2020;8:19. doi: 10.1186/s40560-020-00437-4.
Ghiani A, Paderewska J, Walcher S, Neurohr C. Mechanical power normalized to lung-thorax compliance predicts prolonged ventilation weaning failure: a prospective study. BMC Pulm Med. 2021;21(1):202. doi: 10.1186/s12890-021-01566-8.
Yan Y, Xie Y, Chen X, Sun Y, Du Z, Wang Y, et al. Mechanical power is associated with weaning outcome in critically ill mechanically ventilated patients. Sci Rep. 2022;12(1):19634. doi: 10.1038/s41598-022-21609-2.