2024, Number 2
<< Back
Revista Mexicana de Trastornos Alimentarios 2024; 14 (2)
Systemic activation of dopamine D2-like receptors decreases food intake in rats
Tejas-Juárez JG, Cruz-Trujillo R, Díaz-Gandarilla JA, Escartín-Pérez RE, Florán-Garduño B
Language: Spanish
References: 31
Page: 209-221
PDF size: 421.32 Kb.
ABSTRACT
Mexico is one of the top five countries in the world in terms of obesity rates. Obesity is a well-established
risk factor for various health issues, including cardiovascular diseases, type II Diabetes
Mellitus, cancer, reproductive complications, and psychological disturbances. As dopamine regulates
eating behavior, it is crucial to investigate how dopaminergic receptors can improve pharmacological
interventions against obesity. Thus, this study aimed to examine the effects of pharmacological systemic
activation of D2-like dopamine receptors on standard food intake and satiety expression. Male
Wistar rats weighing between 220-240 g were administered subcutaneous doses of 0.03, 0.1, or 0.3
mg/kg of quinpirole, a D2-like receptor agonist, at the beginning of the dark phase of the light/dark
cycle. Over two hours, we evaluated standard food intake and behavioral satiety sequence (SSC). Our
results indicated that doses of 0.03 and 0.1 mg/kg reduced food intake without affecting postprandial
satiety expression. However, the dose of 0.3 mg/kg destabilized SSC, preventing the expression of
satiety due to a motor effect. Therefore, we suggest that low doses of quinpirole may be a viable treatment
option for obesity without affecting postprandial satiety expression.
REFERENCES
Alcalde-Rabanal, J. E., Orozco-Núñez, E., Espinosa-Henao,O. E., Arredondo-López, A., & Alcayde-Barranco,L. (2018). The complex scenario of obesity, diabetesand hypertension in the area of influence of primaryhealthcare facilities in Mexico. PloS One, 13(1), e0187028.https://doi.org/10.1371/journal.pone.0187028
Baladi, M. G., Newman, A. H., & France, C. P. (2010). DopamineD3 receptors mediate the discriminative stimuluseffects of quinpirole in free-feeding rats. The Journal ofPharmacology and Experimental Therapeutics, 332(1), 308–315. https://doi.org/10.1124/jpet.109.158394
Barrea, L., Pugliese, G., Muscogiuri, G., Laudisio, D., Colao,A., & Savastano, S. (2020). New-generation anti-obesitydrugs: naltrexone/bupropion and liraglutide. Anupdate for endocrinologists and nutritionists. MinervaEndocrinologica, 45(2), 127–137. https://doi.org/10.23736/S0391-1977.20.03179-X
Cooper, S. J., & Al-Naser, H. A. (2006). Dopaminergic controlof food choice: contrasting effects of SKF 38393and quinpirole on high-palatability food preference inthe rat. Neuropharmacology, 50(8), 953–963. https://doi.org/10.1016/j.neuropharm.2006.01.006
Costall, B., Hendrie, C. A., Kelly, M. E., & Naylor, R. J. (1987).Actions of sulpiride and tiapride in a simple model ofanxiety in mice. Neuropharmacology, 26(2-3), 195–200.https://doi.org/10.1016/0028-3908(87)90209-7
Eilam, D., & Szechtman, H. (1989). Biphasic effect of D-2agonist quinpirole on locomotion and movements. EuropeanJournal of Pharmacology, 161(2-3), 151–157. https://doi.org/10.1016/0014-2999(89)90837-6
Gadde, K. M., Martin, C. K., Berthoud, H. R. & Heymsfield,S. B. (2018). Obesity: Pathophysiology and Management.Journal of the American College of Cardiology, 71(1),69–84. https://doi.org/10.1016/j.jacc.2017.11.011
Halford, J. C., Wanninayake, S. C. & Blundell, J. E. (1998).Behavioral satiety sequence (BSS) for the diagnosis ofdrug action on food intake. Pharmacology, Biochemistry,and Behavior, 61(2), 159–168. https://doi.org/10.1016/s0091-3057(98)00032-x
Huang, J. J., Yen, C. T., Liu, T. L., Tsao, H. W., Hsu, J. W. &Tsai, M. L. (2013). Effects of dopamine D2 agonist quinpiroleon neuronal activity of anterior cingulate cortexand striatum in rats. Psychopharmacology, 227(3), 459–466. https://doi.org/10.1007/s00213-013-2965-4
Kuo, D. Y. (2002). Co-administration of dopamine D1 andD2 agonists additively decreases daily food intake,body weight and hypothalamic neuropeptide Y level inrats. Journal of Biomedical Science, 9(2), 126–132. https://doi.org/10.1007/BF02256023
Kuo, D. Y. (2003). Further evidence for the mediation ofboth subtypes of dopamine D1/D2 receptors and cerebralneuropeptide Y (NPY) in amphetamine-inducedappetite suppression. Behavioural Brain Research, 147(1-2), 149–155. https://doi.org/10.1016/j.bbr.2003.04.001
Ladenheim, E. E. (2015). Liraglutide and obesity: a review ofthe data so far. Drug Design, Development and Therapy, 9,1867–1875. https://doi.org/10.2147/DDDT.S58459
López-Alonso, V. E., Hernández-Correa, S., Escobar, C., Escartín-Pérez, R. E., Mancilla-Díaz, J. M. & Díaz-Urbina,D. (2023). The central blockade of the dopamine DR4receptor decreases sucrose consumption by modifyingthe microstructure of drinking behavior in malerats. IBRO Neuroscience Reports, 14, 195–201. https://doi.org/10.1016/j.ibneur.2023.02.001
Malmberg, A. & Mohell, N. (1995). Characterization of [3H]quinpirole binding to human dopamine D2A and D3receptors: effects of ions and guanine nucleotides. TheJournal of Pharmacology and Experimental Therapeutics,274(2), 790–797.
Mirmohammadsadeghi, Z., Shareghi Brojeni, M., Haghparast,A. & Eliassi, A. (2018). Role of paraventricularhypothalamic dopaminergic D1 receptors in food intakeregulation of food-deprived rats. European Journalof Pharmacology, 818, 43–49. https://doi.org/10.1016/j.ejphar.2017.10.028
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron,M. G. (1998). Dopamine receptors: from structure tofunction. Physiological reviews, 78(1), 189–225. https://doi.org/10.1152/physrev.1998.78.1.189
Palmiter, R. D. (2007). Is dopamine a physiologicallyrelevant mediator of feeding behavior?. Trends inNeurosciences, 30(8), 375–381. https://doi.org/10.1016/j.tins.2007.06.004
Rowlett, J. K., Mattingly, B. A. & Bardo, M. T. (1995). Repeatedquinpirole treatment: locomotor activity,dopamine synthesis, and effects of selective dopamineantagonists. Synapse, 20(3), 209–16. doi: 10.1002/syn.890200304. PMID: 7570352.
Rusk, I. N. & Cooper, S. J. (1988). Profile of the selectivedopamine D-2 receptor agonist N-0437: its effects onpalatability- and deprivation-induced feeding, and operantresponding for food. Physiology & Behavior, 44(4-5),545–553. https://doi.org/10.1016/0031-9384(88)90317-4
Saebi Rad, F., Haghparast, A. & Eliassi, A. (2020). VentralTegmental Area Microinjected-SKF38393 IncreasesRegular Chow Intake in 18 Hours Food-Deprived Rats.Basic and Clinical Neuroscience, 11(6), 773–780. https://doi.org/10.32598/bcn.11.6.2226.1
Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez,T., Cuevas-Nasu, L., Bautista-Arredondo, S.,Colchero, M.A., Gaona-Pineda, E.B., Lazcano-Ponce,E., Martínez-Barnetche, J., Alpuche-Arana, C., Rivera-Dommarco, J. (2022). Encuesta Nacional de Salud yNutrición 2021 sobre Covid-19. Resultados nacionales. InstitutoNacional de Salud Pública.
Starr, B. S., & Starr, M. S. (1986). Grooming in the mouseis stimulated by the dopamine D1 agonist SKF 38393and by low doses of the D1 antagonist SCH 23390,but is inhibited by dopamine D2 agonists, D2 antagonistsand high doses of SCH 23390. Pharmacology,Biochemistry, and Behavior, 24(4), 837–839. https://doi.org/10.1016/0091-3057(86)90421-1
Stuchlik, A., Rehakova, L., Rambousek, L., Svoboda, J. &Vales, K. (2007). Manipulation of D2 receptors withquinpirole and sulpiride affects locomotor activitybefore spatial behavior of rats in an active placeavoidance task. Neuroscience Research, 58(2), 133-9. doi:10.1016/j.neures.2007.02.006. Epub 2007 Feb 16. PMID:17360063.
Tejas Juárez, J. G., Mancilla Díaz, J. M., Florán Garduño,B. & Escartín Pérez, R. E. (2010). Los receptores dopaminérgicosD2/D3 hipotalámicos participan enla regulación del comportamiento alimentario. RevistaMexicana de Análisis de la Conducta, 36(2), 53-69.Recuperado en 17 de agosto de 2023, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-45342010000200005&lng=es&tlng=es.
Tejas-Juárez, J. G., Cruz-Martínez, A. M., López-Alonso,V. E., García-Iglesias, B., Mancilla-Díaz, J. M.,Florán-Garduño, B. & Escartín-Pérez, R. E. (2014).Stimulation of dopamine D4 receptors in the paraventricularnucleus of the hypothalamus of male ratsinduces hyperphagia: involvement of glutamate. Physiology& Behavior, 133, 272–281. https://doi.org/10.1016/j.physbeh.2014.04.040
Terry, P., Gilbert, D. B. & Cooper, S. J. (1995). Dopaminereceptor subtype agonists and feeding behavior.Obesity Research, 3 Suppl 4, 515S–523S. https://doi.org/10.1002/j.1550-8528.1995.tb00221.x
Ukai, M., Nakayama, S., & Kameyama, T. (1988). Apomorphinemarkedly potentiates naltrexone-inducedhypodipsia in the rat. Brain Research, 451(1-2), 357–360.https://doi.org/10.1016/0006-8993(88)90784-6
Valdés Miramontes, E.H., Enciso Ramírez, M.A., FonsecaBustos, V. & Pineda Lozano, J.E. (2022). Obesity, energyintake and eating behavior: A review of the mainfactors involved / Obesidad, ingesta energética ycomportamiento alimentario: Una revisión de losprincipales factores involucrados. Revista Mexicanade Trastornos Alimentarios/Mexican Journal ofEating Disorders. 10(3), 308-320. https://doi.org/10.22201/fesi.20071523e.2019.2.563
Wellman P. J. (2008). Systemic mazindol reduces foodintake in rats via suppression of meal size and mealnumber. Journal of Psychopharmacology (Oxford, England),22(5), 532–535. https://doi.org/10.1177/0269881107083837
Yonemochi, N., Ardianto, C., Yang, L., Yamamoto, S.,Ueda, D., Kamei, J., Waddington, J. L. & Ikeda, H.(2019). Dopaminergic mechanisms in the lateral hypothalamusregulate feeding behavior in associationwith neuropeptides. Biochemical and Biophysical ResearchCommunications, 519(3), 547–552. https://doi.org/10.1016/j.bbrc.2019.09.037
Zarrindast, M. R., Owji, A. A. & Hosseini-Nia, T. (1991).Evaluation of dopamine receptor involvement in ratfeeding behaviour. General Pharmacology, 22(6), 1011–1016. https://doi.org/10.1016/0306-3623(91)90570-v